
GPU-Accelerated Discontinuous Galerkin
Methods for Vortex Transport Simulations

Guodong Chen cgderic@umich.edu

Abstract

In this project, we present the development of a GPU-accelerated discontinuous
Galerkin (DG) finite element method (FEM) for two-dimensional vortex transport
simulations. Compressible Euler equations are solved and integrated in time to ac-
curately preserve the vortex during the transport. The DG code is implemented in
C using NVIDIA’s Compute Unified Device Architecture (CUDA). Numerical experi-
ments on a set of computational meshes with different DG approximation orders are
performed to demonstrate the performance of our implementation. Furthermore, sev-
eral optimization techniques are investigated to further improve the code performance.
The effectiveness of the GPU implementation encourage more development and opti-
mization on the current implementation.

1 Introduction

Accurate transport of vortices is important in the analysis of many aeronautical systems,
including fixed-wing aircraft and rotorcraft. High resolution in space and time, on unstruc-
tured meshes, is vital in preserving vorticity and minimizing the introduction of spurious
numerical errors that dissipate the vortex. High-order numerical methods are essential for
achieving the preferred accuracy and efficiency. Discontinuous Galerkin (DG) finite element
methods (FEM) have received much attention over the past decades[1, 2], largely due to its
high-order nature and robustness for dealing with convection-dominated problems, which
govern the flow phenomena in most aeronautical systems. The vortex transport problem
studied in this paper is on the limit of convection-dominated problems, where viscous effects
are ignored, i.e., pure convection without dissipation1. In this project, we will simulate an
isentropic vortex in uniform flow, on a square domain with periodic boundaries. Figure 1
shows the setup for the vortex problem we are considering in this project. The left figure
shows a sample unstructured mesh consists of non-overlap triangle elements, while the right
one presents a sample pressure field contour over the computation domain. Different from
the structured meshes with implicit connection information, unstructured meshes require
explicit storage of the connections.

In DG spatial discretization, the solution is approximated by polynomials inside each ele-
ment over the computational mesh, without continuity restrictions on the element interfaces.

1Although no nature dissipation is presented in the system, any numerical method may bring in the
numerical dissipation to stabilize the system.

1

Figure 1: Sample computational mesh (left) and pressure field of a vortex (right).

In other words, the solution is only continuous inside an element, and can be discontinu-
ous across the element interfaces. The coupling between adjacent elements only comes in
with uniquely defined inter-element numerical fluxes, by choosing an appropriate Riemann
solver[3]. Therefore, the computing and memory access pattern in DG is mostly local, hence
is generally easy to parallelize. Moreover, the high-order solution representation in DG re-
quires fewer data points to resolve the solution and hence less memory access compared to
finite volume and finite difference methods, with the expense of higher arithmetic inten-
sity per degree-of-freedom (data point). The relatively high computation intensity and low
memory access make DG particularly suitable for parallelization on GPU. To investigate the
feasibility of accelerating DG simulations using GPU and the potential performance gains,
we implement the DG method using CUDA programming model and test it on the vortex
transport problem mentioned above.

The remainder of this paper proceeds as follows. We describe the numerical approach
including the governing equations and the DG discretization in Section 2. Detailed work
partitioning and parallel algorithms are presented in Section 3. Numerical experiments are
performed in Section 4 to investigate the correctness and measure the performance of our
implementation. Section 5 Concludes the present work and discusses the potential future
work.

2 Numerical Approach

2.1 Governing Equations

In this ideal problem, the vortex gets transported without any viscous effects. The governing
partial differential equations (PDEs) for the system are compressible Euler equations, which
is derived from the inviscid limit of the compressible Navier-Stokes equations. In two spatial
dimensions, the Euler equations can be written as

∂u

∂t
+∇ · ~F(u) = 0, (1)

2

where u ∈ RS is the conservative states with S components, defined by flow physical quan-
tities, e.g., density and velocities. ~F ∈ [RS]2 is a two dimensional spatial flux vector with S
components in each dimension (direction). S is often referred to as the state rank, S = 4 in
this problem.

state: u =

ρ
ρu
ρv
ρE

 , flux: ~F =

ρu

ρu2 + p
ρuv
ρuH

 x̂+

ρv
ρuv

ρv2 + p
ρvH

 ŷ. (2)

In order to close the Euler equations, we need to include the perfect gas law. The variables
in the whole system are defined as follows:
ρ = density Calorically-perfect gas
u, v = x, y components of velocity e = cvT
E = total energy per unit mass h = cpT
e = internal energy per unit mass p = ρRT
H = total entropy per unit mass = (γ − 1)

[
ρE − 1

2
ρ|~v|2

]
h = internal enthalpy per unit mass H = E + p/ρ

p = pressure M = |~v|/c =
√
u2 + v2/c

R = gas constant for air, cp − cv c =
√
γRT =

√
γp/ρ

γ = ratio of specific heats, cp/cv = 1.4
cp = specific heat at constant pressure
cv = specific heat at costant volume
c = speed of sound
M = Mach number

2.2 Initial and Boundary conditions

We use the analytical vortex solution of the Euler equations to get the initial condition for
the states. The state at point ~x = (x, y) at time t is given as

ρ = ρ∞f
1/(γ−1)
1 ,

u = U∞ − f2(y − y0 − V∞t),
v = V∞ + f2(x− x0 − U∞t),
p = p∞f

γ/(γ−1)
1 .

(3)

The function f0, f1 and f2 are defined as

f0 = 1− |~x− ~x0 − ~V∞|2
r2
c

,

f1 = 1− ε2(γ − 1)M2
∞
ef0

8π2
,

f2 = ε
|~V∞|
2πrc

ef0/2.

(4)

3

The subscripts ∞ denotes a background ”free-stream” state without vortex perturbation.
In this problem, we have the units: ~x0 = (0, 0), ~V∞ = (U∞, V∞) = (1, 1)/

√
2, ρ∞ = 1,

M∞ = 0.5, γ = 1.4, ε = 0.3, rc = 1.0.
We initialize the state vector by taking t = 0 in Eqn. 3, and periodic boundary condition

is used for this problem. By the choices of the initial and boundary conditions, we would
expect that the vortex centered at the origin at t = 0 (Figure 1) will get transported by the

free-stream velocity ~V∞ diagonally to the upper-right corner of the computational domain
and then come back from the lower-left corner (periodic). The DG method is intended to
simulate this transport phenomenon.

2.3 DG Spatial Discretization

2.3.1 Solution Approximation

A discontinuous Galerkin (DG) finite element method is implemented to solve the given
problem. In DG, the solution is approximated as a weighted sum of basis functions over the
entire domain,

u(~x, t) = [us(~x, t)], s = 1, ..., S; S = 4.

ui(~x, t) ≈
Ne∑
k=1

Np∑
j=1

Us
k,jφ

p
k,j(~x).

(5)

where Ne is the number of the elements, φpk,j(~x) is the jth polynomial basis function, of
order p, on the element k; Np is the number of basis functions per element, and Us

k,j are the

time varying coefficients for φpk,j(~x) associated with sth state component. Therefore, we have
Ne×Np unknown coefficients per state component, i.e., the total degrees of freedom (DOF)
are Ne ×Np × S. By the discontinuous definition, φpk,j has only local support at element k,
i.e., φpk,j = 0 in all other elements. For easy exposition, the super script p in φpi,j is omitted
for the rest of the paper.

2.3.2 Weak Form

By substituting Eqn. 5 into the Euler equations, we have the strong from of the original
PDE, which is not very useful as we can not solve the coefficient vector Us

k,j with it. If
we further multiply the strong form with the test functions (the same as our solution basis
functions) and integrate by parts over each element, we have the weak form of the Euler
equations. Consider test function φk,i which only has support over element k, Ωk, the weak
form can be written as∫

Ωk

φk,i
∂u

∂t
dΩ−

∫
Ωk

∇φk,i · ~FdΩ +

∫
∂Ωk

φ+
k,iF̂(u+,u−, ~n)dl = 0. (6)

where ~n is the normal vector that points out of Ωk on its edges; F̂ is the numerical inter-
element flux function, and the superscripts +/− denote a quantity taken from the inte-
rior/exterior of element k.

4

Substituting Equation (5) into Equation (6) gives a system of ODEs,

M
dU

dt
+ R(U) = 0 (7)

where M is the mass matrix and R(U) is the residual vector that depends on the state
U = [Us], s = 1, ..., S. The state U and residual R are unrolled vectors/arrays of size
Ne × Np × S, where S is the number of the state components. The mass matrix M is a
Ne×Np×S by Ne×Np×S block-diagonal matrix with Np×S by Np×S block Mk for each
element, due to the local support of the elemental integral. Since every state component
use the same set of basis functions, Mk is again block diagonal with repeated Np × Np

block Mk,scalar for each state. Mk,scalar only differs by a factor Jk (often referred to as
Jacobian determinant) for different elements, accounting for different element geometries,
i.e., Mk,scalar = JkMscalar. As the Mass matrix does not change during the simulation, we
can pre-compute Mscalar and Jk, and store them for the later simulation. This storage is
much more efficient than storing the whole mass matrix M, since only one small matrix
Mscalar ∈ RNp×Np and a vector of scaling factors J ∈ RNe are stored.

2.4 Time Integration

In this project, we use a fourth-order Runge-Kutta (RK4) method to integrate Eqn. 7 in
time. We first rewrite Eqn. 7 as

dU

dt
= −M−1R(U) = f(U), (8)

then the RK4 time integration scheme adopted in this work can be written as

f0 = f(Un, tn),

f1 = f(Un +
1

2
∆tf0, t

n +
∆t

2
),

f2 = f(Un +
1

2
∆tf1, t

n +
∆t

2
),

f3 = f(Un + ∆tf2, t
n + ∆t),

Un+1 = Un +
∆t

6
(f0 + 2f1 + 2f2 + f3).

(9)

Sue to the diagonal pattern of M, the inversion M−1 in Eqn. 8 can be done locally, and
similarly the inverse matrix can also be stored as a small matrix and a set of scaling factors.

3 Implementation

The main computational effort in this simulation is the evaluation of the residual vector R
in Eqn. 7, and the RK4 time integration which is relatively easy to implement. We now
discuss the steps to parallelize the evaluation of the residual vector, R. The residual vector
R(U) is the last two terms in Eqn. 6,

R(U)k,i = −
∫

Ωk

∇φk,i · ~F(u)dΩ +

∫
∂Ωk

φ+
k,iF̂(u+,u−, ~n)dl. (10)

5

This computation involves a volume integral and face integral, which are the two main
kernels in the CUDA implementation. We call them calculateVolumeRes kernel and
calculateFaceRes kernel in the rest of the report. By convention, face and edge are used
interchangeably in the work to denote the element boundary.

3.1 Volume Integration Kernel

For the volume integral term

R(U)vk,i = −
∫

Ωk

∇φk,i · ~F(u)dΩ, (11)

the parallisim is fairly straightforward. We use one thread per element to evaluate the
element local volume integral. As we can see in Eqn. 11, ~F(u) only depends on the local
state, Uk. Thus, each thread only needs to read in the local state vector and the local element
geometry information (Jacobian matrix and its determinant) to perform the integration.
For both volume and face integral evaluations, we use numerical integration with standard
Gauss-Legendre points. More details about numerical integration is given in Section 3.4.1.

3.2 Face Integration Kernel

The face integral term for each element can be written as

R(U)fk,i =

∫
∂Ωk

φ+
k,iF̂(u+,u−, ~n)dl =

3∑
e=1

∫
e∈∂Ωk

φ+
k,iF̂(u+,u−, ~n)dl, (12)

where e indexes the edges of the element. The numerical flux term F̂(u+,u−, ~n) at each edge
depends on the state vector on both side, brings in the coupling between adjacent elements.

The face integral turns out requiring more considerations for parallelization. First, we
have two choices to partition the work: element-based or edge-based fashion. Suppose we
have Ne elements (3Ne/2 faces in average): in the former approach, each element requires 3
memory access to the state vectors from neighboring elements and 1 access to its own state
vector, 4Ne memory accesses in total; while in the latter one, each edge requires 2 memory
access to the states on both sides, thus 3Ne/2 × 2 = 3Ne total memory accesses. On the
other hand, the element-based approach requires 3 integral evaluations per element, 3Ne in
total; while the edge-based approach only needs 1 integration which can be used by both
sides, thus only 3Ne/2 edge integral evaluations in total. Given the fact that we are using
unstructured meshes, the data storage of adjacent elements are not contiguous in general,
the memory access can be expensive, thus the latter approach is preferred for less memory
accesses and less computations as well.

Given the comparison above, the edge-based approach is used in this work. Each interior
face is assigned a thread to do the face integral, then the face residual contribution is added to
the elements on both sides. However, the edge-based approach encounters a race condition:
different threads may want to add the residual contribution to the same element at the same
time. The race condition prevents us from simply adding the resulting face integral together

6

with the volume integrals for left element Ωl and the right element Ωr as we compute them.
As a work-around, we store the residual contributions to left element and right element
separately as Rf,l and Rf,r, and add them later to the residual vector when we do the time
integration. Rf,l and Rf,r has the same dimension, and are both indexed by global face
indices, i.e., we have Rf,l = [Rf,l

i] and Rf,r = [Rf,r
i], i = 0, 1, ..., NFace − 1.

3.3 RK4 Kernel

Before the RK4 time integration, we need to add the volume integral and face integral
contributions to the residual vector. We again assign one thread per element. Every thread
loops over the edges of current element, determines if the element is considered as the left
or the right element of that edge, then adds the residual contribution from Rf,l or Rf,r

accordingly. This kernel is referred to as addRes.
After obtaining the total residual vector, we can get the right hand side (RHS) f of

Eqn. 8. We dedicate another kernel doing this mass matrix inversion, f = M−1R. As
mentioned in Section 2.3.2, the inverse of the global matrix M−1 can be pre-computed.
Only one matrix M−1

scalar and one scaling factor 1/Jk for each element is needed to store the
whole inverse matrix. It’s a natural idea to partition the work element-wise, and each thread
is responsible for doing a local mass matrix inversion (actually only matrix multiplication
given the inverse matrix pre-computed and stored). This kernel is called Res2RHS.

With the RHS obtained by Res2RHS, we can update the state vector using RK4 time
integration. Since each RK4 stage requires a global synchronization, thus each of them
launches an individual kernel, although the intermediate stages share the same kernel func-
tion inter rk4 due to the similarity while the final stage has its own kernel function
final rk4.

3.4 Memory Management/Optimization

It’s generally easy to parallelize algorithms like DG on GPU, in which most operations
are local. However, good performance is not always easy to achieve, unless the memory is
appropriately managed and optimized. Several memory optimizations are done during the
development to improve the performance.

3.4.1 Pre-Computed Data and Constant Memory

There are a lot of data reuse in the DG code, e.g., the mesh information, mass matrices and
the numerical integration data. We take the numerical integration data as an example of
pre-computed data usage.

Both the volume and face integrals are evaluated using numerical integration. Standard
Gauss-Legendre points are used as quadrature rules in this work. The integral of a function
f , can be approximated with a weighted sum of the function evaluated at the quadrature
points. Thus the volume integral in Eqn. 11 inside every element requires the basis function
gradients evaluated at 2D quadrature points, while the the face integral in Eqn. 12 requires
the basis functions evaluated at 1D quadrature points. Although the shapes of the elements
are different, these evaluations can be done in a reference space and then mapped to each

7

element during the integral. The gradients of the Np basis functions at Nq2 2D quadrature
points are stored in a matrix ∇Φ ∈ RNq2×Np , with corresponding integration weights wq2.
Similarly, for face integral we have Np basis functions evaluated at Nq1 quadrature points,
Φ ∈ RNq1×Np , with weights wq1.

Numerical integration data is an example of the data that can be pre-computed and
repeatedly used for each thread. Data like mesh connection information, global mass matrix
can also be pre-computed and stored for later use in the simulation. Some of these data
like the quadrature matrix will be accessed by many threads at the same time, at the same
memory address. This is the best usage for constant memory, which has dedicated on-chip
caches and is optimized for this kind of uniform memory access pattern. On the other hand,
data like mesh connections are not suitable for the constant memory as different thread may
read the connection data for different elements, thus at different memory addresses. This
kind of memory access in constant memory is as slow as global memory access.

3.4.2 Thread Local Data

During both volume and face integrations mentioned above, each thread needs to load the
element local state vector from the global memory, together with the quadrature data from
the constant memory, in order to evaluate the physical states u or states gradients ∇u inside
the element or on the element edges. After getting the physical states, each thread also needs
to calculate and store the physical flux F or the numerical flux F̂. The size of these data
depend on the approximation order and the number of quadrature points. At the very
beginning of my implementation, I call each thread to allocate memory in the GPU heap to
store these data, i.e., calling malloc() and free() on the device by each thread. However,
the code performs poorly as all of these data then go to GPU global memory. This “heap”
type global memory seems to have extremely high memory latency even compared to ”stack”
type global memory, although no explicit differences are found in the CUDA programming
Guide [4].

A better approach to deal with these “dynamic” memory in my experience on GPU is to
use “stack” static memory declaration, i.e., telling the compiler to dedicate a fixed amount
memory (maximum amount) to store these data in the compiling stage. By doing this, the
device global memory bandwidth achieved is more than 50 times higher than the “heap”
global memory. My guess is that by using “heap” global memory, each thread memory
allocation may end up at random global memory address (as all concurrent threads allocate
memory at the same time), and this cannot be optimized as it is run-time allocation. Another
guess is that all the threads are concurrently allocating memory in the global memory, the
device may have to somehow serialize the allocation to avoid race conditions in memory
allocations, resulting a huge bandwidth loss. However by using “stack” type global memory,
it can be optimized in the compilation, such that the thread memory access pattern can be
optimized to achieve high memory bandwidth. More investigation is needed to determine
the reason for the differences between these two approaches.

8

3.4.3 Max Registers per Thread and Occupancy

As mentioned in Section 3.4.2, the intermediate data storage in the calculateVolumeRes

and calculateFaceRes may need a lot of memory, which will quickly fill out the registers
on the chip. When the the available registers are used up for active running thread blocks,
each streaming multiprocessor (SM) is limited to simultaneously run only few thread blocks,
resulting low SM occupancy. This low occupancy can be increased by limiting the maximum
registers per thread, by either defining the kernel lunch bounds in the source code or using
the --maxrregcount flag in the compiling stage. The latter approach is examined in the
current implementation. By setting --maxrregcount to a low value, higher SM occupancy
is achieved. However, the performance is not increased since each thread block runs slower
as less registers are assigned, although more concurrent blocks are running simultaneously.

3.5 Concurrent Kernel Launches

As we can see that the volume integration kernel and the face integration kernel are indepen-
dent, we can issue the kernel launches into concurrent streams. On the other hand, all the
other kernels have dependency and hence can only by launched serially. The performance
gains by concurrent kernel launching can be considerable only when the resources are suf-
ficient, e.g., enough registers. Therefore, the benefits of concurrent launches are limited in
our problem where the registers limit the performance very quickly.

4 Numerical Experiments and Performance Analysis

4.1 Code Verification

The CUDA code developed in this project is first verified by running a set of tests on different
computational meshes with different orders. The results are compared to an equivalent CPU
version of the DG code. The CUDA code is able to produce the same results as the CPU
code, indicating correctness of the CUDA implementation. The GPU used in this work is
the Nvidia GeForce GTX 1080, and the CPU used is the AMD Ryzen 7 1800X.

Only two set of results on different computational meshes are shown in Figure 2 for
conciseness. The computational domain is first divided to equal squares and then each
square is divided to two equal triangle elements. Thus the mesh size is characterized by
the number of squares on each side, N . The total number of triangular mesh elements can
be related to N as Ne = 2N2. For later performance analysis, we use N instead of Ne

as the mesh metric. In the actual tests, very large N is tested, however only small N is
shown in Figure 2 due to the difficulties of visualizing the mesh. The computational domain
is in [−5, 5]2, and the simulation starts at t = 0, ends at t = 10, when the vortex starts
leaving the upper-right corner and entering the lower-left corner. We can see that that our
implementation is able to accurately simulate the vortex transport, and as the mesh gets
finer the accuracy is higher.

9

−4 −2 0 2 4

x

−4

−2

0

2

4

y
p contour plot (p = 2, N = 16)

2.8539

2.8543

2.8547

2.8551

2.8555

2.8559

2.8563

2.8567

2.8571

−4 −2 0 2 4

x

−4

−2

0

2

4

y

u contour plot (p = 2, N = 16)

0.6575

0.6675

0.6775

0.6875

0.6975

0.7075

0.7175

0.7275

0.7375

0.7475

(a) Pressure p and x-velocity u contours, DG approximation order p = 2, Mesh N = 16

−4 −2 0 2 4

x

−4

−2

0

2

4

y

p contour plot (p = 2, N = 64)

2.8540

2.8544

2.8548

2.8552

2.8556

2.8560

2.8564

2.8568

2.8572

−4 −2 0 2 4

x

−4

−2

0

2

4

y

u contour plot (p = 2, N = 64)

0.6575

0.6675

0.6775

0.6875

0.6975

0.7075

0.7175

0.7275

0.7375

0.7475

(b) Pressure p and x-velocity u contours, DG approximation order p = 2, Mesh N = 64

Figure 2: Code verification on different meshes with approximation order p = 2.

4.2 Kernel Lunch Configuration Analysis

The kernel launch parameters are studied to determine the optimal kernel launch configu-
ration. In this test, we studied several mesh sizes N and approximation orders p with only
10 RK4 iterations. The results are summarized in Table 1. We can see that for most of
the tests, the performance stalls at 1 warp per SM, indicating very low occupancy. This is
mainly due to the high memory requirement per thread, using up all available registers very
quickly. The occupancy can be increased by limiting the registers per thread as mentioned
in Section 3.4.3, though no performance improvements have been found due to slower thread
blocks as described in Section 3.4.3.

10

thread per block 32 64 128 256 512

time (ms)

N = 160, p = 0 41.978 52.031 50.972 51.697 52.069
N = 160, p = 1 211.883 227.306 235.896 228.627 221.035
N = 160, p = 2 1037.709 1123.094 1135.604 1130.568 1140.236
N = 320, p = 0 109.953 159.936 162.701 165.591 168.216
N = 320, p = 1 695.748 889.766 905.512 915.440 853.13
N = 320, p = 2 3641.40 4071.97 4083.567 4084.301 3246.27

Table 1: Different kernel configuration on various mesh sizes and approximation orders. Here
p = 0 means order 0 polynomial, which is constant inside an element.

4.3 Speedup and Scaling Analysis

The performance of the GPU accelerated DG code is first studied by comparing with the
equivalent CPU version. The CPU code is a serial code run on AMD 1800x, and the GPU
code is run on GeForce GTX 1080 with 32 threads per block. Both codes are run with only
10 RK4 iterations, and the timing results are reported in Table 2 and Figure 3.

Mesh size N 32 64 128 256 512

time(ms) p = 0
CPU 59.718 238.092 1011.105 4127.669 16266.888
GPU 10.013 11.588 33.315 78.892 260.675

speedup 5.964 20.56 30.349 52.321 62.403

Mesh size N 32 64 128 256 512

time(ms) p = 1
CPU 262.168 1069.318 4357.10 17851.866 71707.630
GPU 26.742 30.622 125.91 464.836 1676.459

speed up 9.804 34.920 34.605 38.403 42.784

Mesh size N 32 64 128 256 512

time(ms) p = 2
CPU 787.065 3279.467 13300.709 53283.997 212828.953
GPU 30.374 91.682 701.729 2446.404 7851.896

speedup 25.920 35.770 18.973 21.784 27.087

Table 2: GPU relative speedup compare to CPU implementation on different mesh sizes.

11

10
1

10
2

10
3

Mesh size N

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

m
s
)

CPU, p=0

GPU, p=0

CPU, p=1

GPU, p=1

CPU, p=2

GPU, p=2

Figure 3: GPU scaling

First we can see in the table that the GPU implementation achieves considerable speedups
compared to the serial CPU code, demonstrating the effectiveness of our implementation.
Ideally, if the resources (compute power and memory band-width) are sufficient, GPU can
handle problems with different sizes in similar amount of time. In practice, this can not be
achieved due to the compute and memory latency and hence the GPU timing also scales
with the problem size. As we can see in the Table 2 and Figure 3, the CPU timing scales
linearly with respect to the problem size (linear in log with respect to N, i.e., linear with
respect to the total work Θ(N2)), GPU scales sub-linearly for lower order p, while linearly
for higher orders.

4.4 Performance Metrics

A detailed profiling is done for a fixed mesh with N = 128 but various approximation
orders, the memory band-width and floating point operations per second are measured and
summarized in Table 3. As we can see in the table that the face integral kernel has higher
Flops and in general lower band-width. The high Flops in face integral kernel is achieved
mainly in the numerical flux F̂ calculations, which repeatedly uses the data loaded. On
the other hand, the face integral kernel loads the data from adjacent elements, which are in
general not contiguous in memory, resulting a low memory band-width. On the contrary, the
volume integral kernel only reads the data belongs to the same element, which has higher

12

band-width. However, as the data operations are not intense in this kernel, the Flops are
lower compared to the face integral kernel. Moreover, as the order p increases, the volume
integral memory burden becomes worse as the degrees-of-freedom inside an element grow as
p2. This explains the Flops loss as p = 2 for the volume integral kernel. Finally, in current
work, we store the global state vector in a way that all degrees-of-freedom per element are
stored contiguous. This is in general how we store the state data in DG. However, this is not
optimal for GPU as each thread accesses different element state vectors, prevents coalescing
memory access in each thread warp. The profiling results suggest more optimization on
memory to achieve higher memory band-width and higher Flops.

Kernel calculateVolumeRes calculateFaceRes

N = 128, p = 0
Band-Width (GB/s) 129.1 77.4

Flops (GFlop/s) 25.9 72.7

N = 128, p = 1
Band-Width (GB/s) 143.8 87.5

Flops (GFlop/s) 27.9 68.6

N = 128, p = 2
Band-Width (GB/s) 100.1 107.7

Flops (GFlop/s) 12.08 51.4

Table 3: Peak memory bandwidth and flops for the two main kernels

5 Conclusion and Future Work

In this work, we implemented the discontinuous Galerkin (DG) finite element method to
simulate the vortex transport problem. The code is tested and verified on different testing
meshes, showing the correctness of the current implementation. The comparison with a CPU
implementation shows the effectiveness of the GPU acceleration in DG simulations. More
detailed performance profiling shows that the memory band-width and double precision
flops are relative low compare to the device peak performance. As the main kernels involve
considerable memory transactions, the memory optimization is essential for achieving good
performance. Furthermore, our current code partitions the work to each element or each
face, largely due to the relatively easy implementation. However, these work partition may
not be the optimal. Better parallel algorithm for DG is also a potential direction for the
future work.

References

[1] Bernardo Cockburn and Chi-Wang Shu. Runge–kutta discontinuous galerkin methods for
convection-dominated problems. Journal of Scientific Computing, 16(3):173–261, 2001.

[2] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the compressible
Navier-Stokes equations. In Bernardo Cockburn, George Karniadakis, and Chi-Wang
Shu, editors, Discontinuous Galerkin Methods: Theory, Computation and Applications,
pages 197–208. Springer, Berlin, 2000.

13

[3] P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43:357–372, 1981.

[4] Design Guide. Cuda c programming guide. NVIDIA, July, 2013.

14

	Introduction
	Numerical Approach
	Governing Equations
	Initial and Boundary conditions
	DG Spatial Discretization
	Solution Approximation
	Weak Form

	Time Integration

	Implementation
	Volume Integration Kernel
	Face Integration Kernel
	RK4 Kernel
	Memory Management/Optimization
	Pre-Computed Data and Constant Memory
	Thread Local Data
	Max Registers per Thread and Occupancy

	Concurrent Kernel Launches

	Numerical Experiments and Performance Analysis
	Code Verification
	Kernel Lunch Configuration Analysis
	Speedup and Scaling Analysis
	Performance Metrics

	Conclusion and Future Work

