
Enabling Automated, Reliable, and Efficient

Aerodynamic Shape Optimization With

Output-Based Adapted Meshes

by

Guodong Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering and Scientific Computing)

in The University of Michigan
2020

Doctoral Committee:

Associate Professor Krzysztof J. Fidkowski, Chair
Associate Professor Karthik Duraisamy
Associate Professor Kevin J. Maki
Professor Joaquim R. R. A. Martins

Guodong Chen

cgderic@umich.edu

ORCID iD: 0000-0002-3294-4749

© Guodong Chen 2020 All Rights Reserved

https://orcid.org/0000-0002-3294-4749

For my grandfather

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Krzysztof J. Fidkowski,

for his continuous support and insightful guidance throughout my graduate study. I am

grateful to him for giving me the flexibility of trying out many different research ideas,

while still keeping me on track towards the main dissertation topic. It is always a privilege

to work with him either as a PhD student or as a teaching assistant. I have been and will

be forever inspired by his enthusiasm for research and his commitment to teaching.

I would also like to thank my doctoral committee members, Professor Karthik Du-

raisamy, Professor Joaquim R. R. A. Martins, and Professor Kevin J. Maki, for their

time and effort spent on this work. Particularly, Professor Duraisamy has taught my

first graduate CFD class which refreshed my knowledge in this field and has always been

accessible and helpful during my PhD; Professor Martins has benefited my work through

his expertise in optimization over the years, from high-level motivations to detailed algo-

rithm implementations; Professor Maki has provided valuable comments and feedback in

a different perspective.

Life at Michigan would be much less fun without the cool friends I have met and

befriended. I would like to thank my research labmates: Steve Kast, Johann Dham, Kyle

Ding, Devina Sanjaya, Yuki Shimizu, Gustavo Halila, Kevin Doetsch, Gary Collins, Vivek

Ojha, Matteo Franciolini, Qingzhao Wang, Miles McGruder, and Rakesh Halder. Special

thanks go to Johann for his hands-on help with the group research code at my beginning

stage of PhD. I feel lucky to sit in the same office with Devina, Kyle, and Yuki. I enjoy

discussing research with you, I miss the time going out and having fun with you, and I

am grateful for your advice on both professional and personal development. Office 2025

has most of my memories for PhD and you guys are forever my best friends.

I am also grateful to the friends outside my group who have stood with me. My

current office mate Yifan Bai deserves many thanks for sharing the same space peacefully

and for being a good friend. I cherish the friendship with Jiayang Xu, Shaowu Pan,

Daning Huang, Sicheng He, Ping He, Jichao Li, Yayun Shi, and I have learned a lot from

discussions of research with you. Many thanks go to Fabian Chacon, Samuel Chen, Doreen

Fan, Chris Marley, Chris Wentland, Logan White, Aaditya Lakshmanan, Siddhartha

iii

Srivastava, Avinkrishnan Vijayachandran, Shiyao Lin, and Minh Hoang Nguyen for being

so welcoming of me. I enjoy hanging out with you guys and hope our paths cross again

in the future. Hoang deserves recognition for making my life so much easier as a cool

roommate such that I could focus on research and thesis writing at the very end of my

PhD. To other friends over the years, Binbin Li, Jiabin Zhu, Tianqi Zhao, Yinong Tan,

Huirong Ning, Lan Ma, Sunming Qin, Yucheng Liu, Xunwei Zhang, Zhiyi Wang, thank

you for being you.

Finally, I would like to thank my parents Qinshun Chen and Zhonge Qu, for bring

me to this world and shaping my life with their continuous encouragement and support,

I could never have been this far without you. Last but certainly not least, I thank my

beloved one, Xiaoya Ding, for her love and support. You are the light of my life and I

look forward to the future of our lives together.

This work was supported by the Department of Energy under the grant DE-FG02-

13ER26146/DE-SC0010341, the Boeing company under the contract PC-1658167, with

technical monitor Dr. Mori Mani, the University of Michigan through Michigan Institute

for Computational Discovery and Engineering (MICDE) Fellowship and the Rackham

Graduate Student Research Grant.

iv

TABLE OF CONTENTS

DEDICATION . ii

Acknowledgements . iii

List of Figures . ix

List of Tables . xiii

List of Abbreviations . xv

List of Symbols . xvii

Abstract . xx

CHAPTER

1. Introduction . 1

1.1 Motivation . 1
1.2 Challenges in Aerodynamic Optimization 3

1.2.1 Design Automation . 5
1.2.2 Design Assessment and Reliability 7
1.2.3 Computational Efficiency 11

1.3 Opportunities for Adaptive CFD in Aerodynamic Optimization . . 13
1.3.1 High-Order CFD Methods 13
1.3.2 Output Error Estimation 14
1.3.3 Mesh Adaptation . 17
1.3.4 Aerodynamic Optimization With Adaptive CFD 18

1.4 Thesis Overviews . 20
1.4.1 Major Contributions . 20
1.4.2 Thesis Outline . 21

2. Governing Equations and Discretization 22

2.1 Equations and Notation . 22
2.2 Compressible Navier-Stokes Equations 23

v

2.3 Reynolds-Averaged Navier-Stokes Equations 26
2.4 Discontinuous Galerkin Discretization 29

2.4.1 Solution Approximation 29
2.4.2 Weak Form . 31
2.4.3 Discrete Form and Solution Technique 35

3. Adjoint-Based Sensitivity Analysis and Output Error Estimation 38

3.1 Adjoint and Duality . 38
3.2 Discrete Adjoint . 41
3.3 Adjoint-Based Sensitivity Analysis 45
3.4 Adjoint-Based Output Error Estimation 47

3.4.1 Error Localization . 51
3.5 Adjoint Consistency . 54

4. Aerodynamic Optimization Problem Formulation, Error Estima-
tion and Mesh Adaptation . 56

4.1 Continuous and Discrete Optimization 57
4.2 Optimization Formulation via the Adjoint 59

4.2.1 Optimizer-Based Trimming 61
4.2.2 Solver-Based Trimming 62

4.3 Output Error Estimation for Optimization 65
4.3.1 Output Error Estimation for Standalone Simulations . . . 66
4.3.2 Output Error Estimation for Optimization Problems . . . 66
4.3.3 Implementation . 72

4.4 Mesh Adaptation Incorporating Anisotropy 73
4.4.1 Error Localization . 73
4.4.2 Continuous Mesh Framework 74
4.4.3 Hessian-Based Anisotropy Detection 76
4.4.4 Sampling-Based Anisotropy Detection 80

5. Aerodynamic Optimization Framework with Adaptive CFD . . . 88

5.1 Two-Dimensional Airfoil Optimization 88
5.1.1 Problem Statement . 88
5.1.2 Geometry Parametrization 89
5.1.3 Angle of Attack Handling 90

5.2 Mesh Deformation . 90
5.2.1 Inverse Distance Weighting Interpolation 91
5.2.2 Radial Basis Function Interpolation 92

5.3 Optimization Algorithm . 93
5.3.1 Gradient-Based Optimizer 93
5.3.2 Incorporation with Output Error Estimation and Mesh

Adaptation . 95

vi

5.3.3 Consistent Objective-Sensitivity Analysis 97
5.3.4 Multifidelity Optimization Algorithm Overviews 100

6. Application to Aerodynamic Optimization 103

6.1 Solution Accuracy and Optimization Tolerance 103
6.2 On the Effects of Discretization Errors in Optimization 106

6.2.1 One-Dimensional Scalar Advection-Diffusion 106
6.2.2 Inviscid Transonic RAE 2822 Airfoil Optimization 108

6.3 Optimizations with Adaptive CFD 117
6.3.1 Revisit of the One-Dimensional Advection-Diffusion Prob-

lem . 117
6.3.2 Revisit of the Inviscid Transonic Optimization on the

RAE 2822 Airfoil . 119
6.3.3 Tandem RAE 2822 Airfoils 128
6.3.4 ADODG Case 2: Turbulent Transonic Optimization on

RAE 2822 . 134
6.4 Summary . 138

7. Extension to Multipoint Aerodynamic Optimization 140

7.1 Multipoint Optimization Problem 140
7.1.1 Weighted-Sum Approach 140
7.1.2 Adjoint and Design Equations 141
7.1.3 Output Error Estimation 143

7.2 Mesh Adaptation . 145
7.2.1 Error/Cost Allocation for Multipoint Mesh Adaptation . 146
7.2.2 Mesh Adaptation at Individual Design Points 148

7.3 Optimization Algorithms . 148
7.4 Results . 149

7.4.1 Two-Point Inviscid Transonic Airfoil Optimization 151
7.4.2 Three-Point Turbulent Transonic Airfoil Optimization . . 158

7.5 Summary . 163

8. Mesh Adaptation Acceleration Techniques Based on Machine
Leaning . 166

8.1 Machine-Learning Anisotropy Detection 167
8.1.1 Primal and Adjoint Features 168
8.1.2 Error Indicator Features 169
8.1.3 Surrogate Model Using Neural Networks 170

8.2 Neural Network Training . 173
8.3 Adaptive Simulation Results . 176

8.3.1 NACA 0012 Airfoil . 178
8.3.2 Diamond Airfoil . 179

vii

8.3.3 MDA 30P/30N Airfoil . 183
8.3.4 Extrapolation: Tandem NACA 5410 Airfoils 184
8.3.5 Adaptive Iteration Comparison 188
8.3.6 p = 3 Results . 191

8.4 Summary . 196

9. Adjoint-Free Error Estimation and Mesh Adaptation Using Con-
volutional Neural Networks . 198

9.1 CNN-Based Model for Output Error Estimation 201
9.1.1 Parameterized PDEs and Output Error Estimation . . . 201
9.1.2 Hanging-Node Mesh Adaptation 203
9.1.3 Surrogate Model as a Regression Problem 204
9.1.4 Convolutional Neural Networks 205
9.1.5 Proposed Architecture and Network Training 208
9.1.6 Fixed Network for Adaptive Simulation on General Do-

mains . 209
9.2 Two-Dimensional Advection-Diffusion Problem 211

9.2.1 Data Generation and Preprocessing 213
9.2.2 Network Implementation and Training 214
9.2.3 Network Testing and Model Deployment 218

9.3 Application in Aerodynamic Simulations Over Airfoils 226
9.3.1 Data Generation and Preprocessing 226
9.3.2 Network Implementation and Training 230
9.3.3 Network Testing and Model Deployment 232

9.4 Summary . 242

10. Conclusions and Future Work . 245

10.1 Summary and Conclusions . 245
10.2 Future Work . 249

Bibliography . 250

viii

LIST OF FIGURES

Figure

1.1 Examples of unconventional aircraft configurations. 3
1.2 An example of an aerodynamic optimization workflow. The essential

modules are highlighted in gray boxes. 5
1.3 Aerodynamic design process including the problem setup and the design

assessment. 6
1.4 Numerical errors in aerodynamic optimization. 8
1.5 Drag coefficients scatter from DPW-IV and DPW-V. 10
1.6 Examples of discretization error effects in optimization. 12
1.7 Aerodynamic optimization with error estimation and mesh adaptation. . 19
1.8 Thesis outline. 21
2.1 An example unstructured mesh Th for flow over a smooth bump in the

computational domain Ω. 30
2.2 Solution approximation using the CG and DG methods. 31
3.1 Sample primal and adjoint solutions of a laminar flow simulation over the

NACA 0012 airfoil. 44
3.2 Nonlinear system solve as a feedback control system. 47
3.3 A summary of the error estimation and error localization procedure ap-

plied to a laminar flow simulation over a NACA 0012 airfoil. 53
4.1 Flowchart of optimization using an optimizer-based trimming approach. . 62
4.2 Trimming process using Newton-Raphson iteration. 63
4.3 Flowchart of optimization using a solver-based trimming approach. 65
4.4 An example of a two-dimensional metric field. 75
4.5 An illustration of metric-based global re-meshing in adaptation. 76
4.6 Four refinement options for a triangle. Each one is considered implicitly

during error sampling, though the elements are never actually refined. . . 83
6.1 Optimization governed by a one-dimensional scalar advection-diffusion

PDE on a uniform coarse mesh. 107
6.2 Manually generated fixed mesh on RAE 2822 airfoil 110
6.3 Comparison of optimizations on a fixed mesh with various approximation

orders. 110
6.4 Mach contour and pressure distribution of the optimized designs from a

fixed mesh with various approximation orders. 111
6.5 Re-analysis of the p = 1 designs on the p = 4 “true” space. 114

ix

6.6 Re-analysis of the p = 2 designs on the p = 4 “true” space. 115
6.7 Re-analysis of the p = 3 designs on the p = 4 “true” space. 116
6.8 Optimization governed by the one-dimensional scalar advection-diffusion

PDE on different meshes. 118
6.9 Revisit of the inviscid transonic optimization on the RAE 2822 airfoil:

meshes for multifidelity and fixed-fidelity optimizations. PDE on a uni-
form coarse mesh. 121

6.10 Revisit of the inviscid transonic optimization on the RAE 2822 airfoil:
objective convergence history and mesh size evolution for different methods.122

6.11 Mach contours on the adapted meshes from different adaptation methods. 124
6.12 Revisit of the inviscid transonic optimization on the RAE 2822 airfoil:

final design comparison. 126
6.13 Tandem RAE 2822 airfoils: initial configuration and the corresponding

primal and adjoint fields. 129
6.14 Tandem RAE 2822 airfoils: final adapted meshes on the optimized designs.131
6.15 Tandem RAE 2822 airfoils: objective convergence and mesh size evolution.131
6.16 Tandem RAE 2822 airfoils: comparison between the optimized designs

from Hessian adaptation and MOESS. Mach number contours has the
same scale, [0.3, 1.35]. 133

6.17 ADODG case 2: the initial mesh and adapted meshes in the optimization. 135
6.18 ADODG case 2: objective convergence history and mesh size evolution

for different methods. 136
6.19 ADODG case 2: local Mach number (0-1.3) and pressure distributions

for the initial and the optimized designs. 137
7.1 Two-point inviscid transonic airfoil optimization: meshes for variable-

fidelity and fixed-fidelity optimization. 154
7.2 Two-point inviscid transonic airfoil optimization: convergence history and

mesh size evolution for different methods. 155
7.3 Meshes around the stagnation streamline, the left mesh is from cost-based

Hessian adaptation, the right one is the MOESS adapted mesh, both at
M = 0.76. 156

7.4 Two-point inviscid transonic airfoil optimization: pressure distribution
for the initial and optimized designs. 158

7.5 Two-point inviscid transonic airfoil optimization: Mach contours at M =
0.70. The color limit is [0, 1.28] for all of the contours. 159

7.6 Two-point inviscid transonic airfoil optimization: Mach contours at M =
0.76. The color limit is [0, 1.4] for all of the contours. 160

7.7 Three-point turbulent transonic airfoil optimization: initial mesh and
final meshes during the optimization. 162

7.8 Three-point turbulent transonic airfoil optimization: objective conver-
gence history and mesh size evolution for different methods. 162

7.9 Three-point turbulent transonic airfoil optimization: pressure distribu-
tion for the initial and optimized designs. 164

7.10 Three-point turbulent transonic airfoil optimization: Mach contours. The
color limit is [0, 1.4] for all of the contours. 165

x

8.1 Structures of artificial neural networks (ANNs). 171
8.2 Flowchart of the neural-network implementation. 173
8.3 Neural network A training loss history, using a 70% training, 30% vali-

dation split. 176
8.4 Visualization of the trained neural networks. 177
8.5 NACA 0012, M∞ = 0.8, α = 1.25◦, Re = 5 × 106: output convergence

history. 178
8.6 NACA 0012: final adapted meshes. 180
8.7 Diamond airfoil, M∞ = 1.5, α = 2◦, Re = 1 × 106: output convergence

history. 181
8.8 Diamond airfoil: final adapted meshes. 182
8.9 MDA 30P/30N, M∞ = 0.2, α = 5◦, Re = 5 × 106: output convergence

history. 184
8.10 MDA 30P/30N airfoil: final adapted meshes. 185
8.11 Tandem NACA 5410 airfoils: initial mesh and primal/adjoint solutions. . 187
8.12 Tandem NACA 5410 airfoils: output convergence history. 188
8.13 Tandem NACA 5410 airfoils: final adapted meshes. 189
8.14 Tandem NACA 5410 airfoils: adaptive iteration performance. 190
8.15 Tandem NACA 5410 airfoils: meshes at adaptive iterations 1 (top) through

4 (bottom). 191
8.16 Visualization of the neural networks for p = 3. The format is the same

as the p = 2 version in Figure 8.4. 192
8.17 Tandem NACA 5410 airfoils: p = 3 output convergence history. 193
8.18 Tandem NACA 5410 airfoils: p = 3 final adapted meshes. 194
8.19 Tandem NACA 5410 airfoils: p = 3 adaptive iteration performance. . . . 195
8.20 Tandem NACA 5410 airfoils: p = 3 meshes at adaptive iterations 1 (top)

through 4 (bottom). 195
9.1 Hanging-node adaptation for a quadrilateral mesh. 204
9.2 An example of convolution operations. 207
9.3 An example of encoder-decoder type convolutional neural networks. . . . 207
9.4 Proposed encoder-decoder network architecture. 209
9.5 An example of building the proposed CNN model on rectangular domains.210
9.6 An example of building the proposed CNN model on general domains. . . 212
9.7 Samples from the dataset of the scalar advection-diffusion problem. . . . 215
9.8 Training history of the model for the scalar advection-diffusion problem. . 216
9.9 Model performance of error indicator field predictions on the training and

validation sets (scalar advection-diffusion). 218
9.10 Model performance of output error predictions on the training and vali-

dation sets (scalar advection-diffusion). 219
9.11 Model interpolation test on the testing dataset (scalar advection-diffusion).220
9.12 Comparison of the CNN model and the standard adjoint-based method

in adaptive simulations (scalar advection-diffusion). 221
9.13 Model extrapolation test on the testing data (scalar advection-diffusion,

unseen Pe). 222

xi

9.14 Comparison of the CNN model and the standard adjoint-based method
in adaptive simulations (scalar advection-diffusion, unseen Pe). 223

9.15 Model extrapolation test on the testing data (scalar advection-diffusion,
unseen α). 224

9.16 Comparison of the CNN model and the standard adjoint-based method
in adaptive simulations (scalar advection-diffusion, unseen α). 225

9.17 The starting coarse mesh for the adaptive simulations and the fixed ref-
erence fine mesh. 228

9.18 Samples from the dataset of the airfoil problem. 229
9.19 Training history of the model for airfoil simulations. 230
9.20 Model performance of error indicator field predictions on the training and

validation sets (aerodynamic flow over airfoils). 232
9.21 Model performance of output error predictions on the training and vali-

dation sets (aerodynamic flow over airfoils). 233
9.22 Model interpolation test on the testing dataset (aerodynamic flow over

airfoils). 234
9.23 Model deployment in adaptive simulations: NACA 2614 airfoil, M =

0.54, α = 1.2◦. 235
9.24 Model deployment in adaptive simulations: NACA 4410 airfoil, M =

0.68, α = 1.0◦. 236
9.25 Model deployment in adaptive simulations: NACA 0012 airfoil, M =

0.50, α = 2.0◦. 237
9.26 Model deployment in adaptive simulations: NACA 2412 airfoil, M =

0.70, α = 1.0◦. 238
9.27 Model deployment in adaptive simulations: NACA 0010 airfoil, M =

0.60, α = −1.0◦. 239
9.28 Model deployment in adaptive simulations: NACA 4412 airfoil, M =

0.62, α = 4.0◦. 240
9.29 Model deployment in adaptive simulations: NACA 3709 airfoil, M =

0.66, α = 0◦. 241
9.30 Model deployment in adaptive simulations: NACA 5715 airfoil, M =

0.62, α = 1.0◦. 242

xii

LIST OF TABLES

Table

6.1 Optimization results (advection-diffusion PDE) on a uniform mesh. The
discretization uses DG with p = 2 and Ne = 8 elements, the optimization
tolerance is set to be ε = 10−10. 108

6.2 Optimization results (inviscid transonic RAE 2822 airfoil optimization)
on a fixed mesh with various approximation orders. The design index is
the iteration number of the considered design, JH denotes the objective
evaluated on the current space, while Jh is the objective obtained on
the “true” p = 4 space; the estimated δJh represents the error estimate
using the adjoint-weighted residual, per Eqn. 4.37, while the “true” δJ
measures the difference between the objectives on the current and the
“true” space. 113

6.3 Optimization results (advection-diffusion PDE) on uniform and adapted
meshes. The discretization uses DG with p = 2 and Ne = 8 elements, the
optimization tolerance is set to be ε = 10−10. 119

6.4 Revisit of the inviscid transonic optimization on the RAE 2822 airfoil:
optimization results summary on different meshes. 125

6.5 Revisit of the inviscid transonic optimization on the RAE 2822 airfoil:
computational cost comparison. In cost-based optimization, the opti-
mization tolerance is dynamically adjusted to be equal to the objective
error estimate; the approximate values of the optimization tolerance in
this table are from the last iteration on each fidelity. The computational
time results are obtained on the same HPC cluster (3.0 GHz Intel Xeon
Gold 6154) using parallel runs with 16 cores and 16GB RAM. 127

6.6 Tandem RAE 2822 airfoils: computational cost comparison. In cost-
based optimization, the optimization tolerance is dynamically adjusted
to be equal to the objective error estimate; the approximate values of the
optimization tolerance in this table are from the last iteration on each
fidelity. Results are obtained on the same HPC cluster (3.0 GHz Intel
Xeon Gold 6154) using parallel runs with 36 cores and 36GB RAM. . . . 132

6.7 Tandem RAE 2822 airfoils: optimized objective on different meshes. The
“true” objective are obtained using order increment from p to p+ 1. . . . 132

xiii

6.8 Comparison of the drag coefficients (in drag counts) for RANS optimiza-
tions of the RAE 2822 airfoil. The mesh sizes are reported in the number
of elements (with superscript ?) or the number of nodes (with superscript
†) in different works. 138

7.1 Multipoint aerodynamic shape optimization problem 149
7.2 Operating conditions for multipoint optimization problems 152
7.3 Two-point inviscid transonic airfoil optimization: computational cost

comparison. 157
7.4 Two-point inviscid transonic airfoil optimization: results on different

meshes. 161
8.1 Four neural network architectures for anisotropy detection. 172
8.2 Neural network training cases. 175
9.1 Network architecture for the scalar advection-diffusion problem. 217
9.2 Network architecture for aerodynamic simulations over airfoils 231

xiv

LIST OF ABBREVIATIONS

ADODG Aerodynamic Design Optimization Discussion Group

AIAA American Institute of Aeronautics and Astronautics

ALE Arbitrary Lagrangian Eulerian

ANN Artificial neural network

AR Aspect ratio

AWR Adjoint weighted residual

BAMG Bi-dimensional Anisotropic Mesh Generator

BFGS Broyden-Fletcher-Goldfarb-Shanno

BR2 Second form of Bassi and Rebay

BWB Blended wing body

CAGR Compound annual growth rate

CFD Computational fluid dynamics

CFDG Comptational fluid dynamics group

CFL Courant-Friedrichs-Lewy

CG Continuous Galerkin

CNN Convolutional neural network

CO2 Carbon dioxide

CORSIA Carbon Offset and Reduction Scheme for International Aviation

CRM Common Research Model

DG Discontinuous Galerkin

DNS Direct numerical simulation

DOF Degrees of freedom

DPW Drag Prediction Workshop

DWR Dual weighted residual

EDG Embedded discontinuous Galerkin

xv

EPIC Edge Primitive Insertion and Collapse

FCN Fully connected network

GMRES Generalized minimal residual method

GPU Graphics processing unit

HDG Hybridized discontinous Galerkin

HPC High performance computing

IATA International Air Transport Association

ICAO International Civil Aviation Organization

IDW Inverse distance weighting

KKT Karush-Kuhn-Tucker

LES Large eddy simulation

LSEI Least squares with equality and inequality constraints

MDA McDonnell Douglas Aerospace

MDO Multidisciplinary design optimization

MLP Multi-layer perceptron

MMT Million metric ton

MOESS Mesh optimization via error sampling and synthesis

NACA National Advisory Committee for Aeronautics

NLP Nonlinear programming

NS Navier-Stokes

OBT Optimizer-based trimming

ODE Ordinary differential equation

PDE Partial differential equation

QP Quadratic programming

RAE Royal Aircraft Establishment

RANS Reynolds-averaged Navier-Stokes

RBF Radial basis function

ReLU Rectified linear unit

ROM Reduced-order model

SA Spalart-Allmaras

SBT Solver-based trimming

SLSQP Sequential Least Squares Programming

SPD Symmetric positive definite

SQP Sequential quadratic programming

xvi

LIST OF SYMBOLS

General

Re Reynolds number

M Mach number

Pe Péclet number

µ Dynamic viscosity

ν Kinematic viscosity

α Angle of attack

c` Lift coefficient

cd Drag coefficient

Ω Computational domain

Discretization

Th Computational mesh

Ωe One mesh element

p Solution approximation order; also used to denote pressure

V ,V Infinite dimensional solution space

Vh,Vh Finite dimensional solution space

u Exact state vector in V
uh Discrete state vector in Vh

w,wh Test function in V and Vh
#„

H Total flux
#„

F Inviscid flux
#„

G Viscous flux

S Source term

R,Rh Semi-linear weak form of the equations in V and Vh

xvii

Uh Fully-discrete unknown vector of the state

Rh Fully-discrete residual vector

Optimization

x Design parameter

x∗ Optimal design

Jadapt Objective/adapt output

Jtrim, J̄trim Constraint/trim output vector and its target values

Rtrim Trim equation residual vector

L Lagrangian function

λ,µ Lagrange multipliers/coupled adjoints

xt Trim variables

xs Active design variables

Error Estimation and Mesh Adaptation

J Continuous output functional

Jh Discrete output functional

δJ Output error estimate

ψ Exact adjoint solution in V
ψh Discrete adjoint solution in Vh

Ψh Fully-discrete unknown vector of the adjoint

H, h Coarse and fine solution spaces (discretizations)

UH
h Injected states from the coarse space to the finer one

E Error indicator

M Riemannian metric field

H Hessian matrix

S Step matrix

Re Anisotropic output error convergence rate tensor

Machine Learning

µ Equation parameters

W Network weight matrix

b Network bias vector

xviii

Θ Network trainable parameters

σ Activation function

h Network hidden layer

Hu Primal solution Hessian matrix

Hψ Adjoint solution Hessian matrix

H Normalized Hessian matrix

M Normalized mesh metric

xix

ABSTRACT

Simulation-based aerodynamic shape optimization has been greatly pushed forward

during the past several decades, largely due to the developments of computational fluid

dynamics (CFD), geometry parameterization methods, mesh deformation techniques, sen-

sitivity computation, and numerical optimization algorithms. Effective integration of

these components has made aerodynamic shape optimization a highly automated pro-

cess, requiring less and less human interference. Mesh generation, on the other hand, has

become the main overhead of setting up the optimization problem. Obtaining a good com-

putational mesh is essential in CFD simulations for accurate output predictions, which

as a result significantly affects the reliability of optimization results. However, this is in

general a nontrivial task, heavily relying on the user’s experience, and it can be worse with

the emerging high-fidelity requirements or in the design of novel configurations. On the

other hand, mesh quality and the associated numerical errors are typically only studied

before and after the optimization, leaving the design search path unveiled to numerical er-

rors. This work tackles these issues by integrating an additional component, output-based

mesh adaptation, within traditional aerodynamic shape optimizations.

First, we develop a more suitable error estimator for optimization problems by taking

into account errors in both the objective and constraint outputs. The localized output

errors are then used to drive mesh adaptation to achieve the desired accuracy on both

the objective and constraint outputs. With the variable fidelity offered by the adap-

tive meshes, multi-fidelity optimization frameworks are developed to tightly couple mesh

adaptation and shape optimization. The objective functional and its sensitivity are first

evaluated on an initial coarse mesh, which is then subsequently adapted as the shape opti-

mization proceeds. The effort to set up the optimization is minimal since the initial mesh

can be fairly coarse and easy to generate. Meanwhile, the proposed framework saves com-

putational costs by reducing the mesh size at the early stages of the optimization, when

the design is far from optimal, and avoiding exhaustive search on low-fidelity meshes when

the outputs are inaccurate. To further improve the computational efficiency, we also intro-

duce new methods to accelerate the error estimation and mesh adaptation using machine

learning techniques. Surrogate models are developed to predict the localized output error

xx

and optimal mesh anisotropy to guide the adaptation. The proposed machine learning

approaches demonstrate good performance in two-dimensional test problems, encourag-

ing more study and developments to incorporate them within aerodynamic optimization

techniques.

Although CFD has been extensively used in aircraft design and optimization, the

design automation, reliability, and efficiency are largely limited by the mesh generation

process and the fixed-mesh optimization paradigm. With the emerging high-fidelity re-

quirements and the further developments of unconventional configurations, CFD-based

optimization has to be made more accurate and more efficient to achieve higher design

reliability and lower computational cost. Furthermore, future aerodynamic optimization

needs to avoid unnecessary overhead in mesh generation and optimization setup to fur-

ther automate the design process. The author expects the methods developed in this

work to be the keys to enable more automated, reliable, and efficient aerodynamic shape

optimization, making CFD-based optimization a more powerful tool in aircraft design.

xxi

CHAPTER 1

Introduction

1.1 Motivation

The last century has seen tremendous development and prosperity of civil aviation,

since the first heavier-than-air flight of the Wright brothers. Progress in technology and

innovations in industry has made air travel more accessible than ever, with lower fares

that are affordable for more people. Worldwide air passenger numbers exceeded 4.3 billion

in 2018 [1], and will continue to rise for the next 20 years (2019-2038) with a compound

annual growth rates (CAGRs) of 4.6%, 4.3%, and 4.7%, forecast by Boeing, Airbus and

Embraer respectively [2, 3, 4] 1. By connecting more and more major cities directly over

the world, air transport has been one of the key forces pushing globalization, continuously

supporting the economic growth through tourism and trade globally.

Despite the rapid development and growth of air transport, it’s environmental impact

has become a major concern for both the industry and the public during the past several

decades. The aviation sector accounts for approximately 2% of global anthropogenic

carbon dioxide (CO2) emissions [7, 8, 9], including international and domestic aviation.

While the percentage of global CO2 emissions from civil aviation has not significantly

changed since 1992, the volume of emissions has increased along with the increase in

global CO2 emissions across other sectors. Civil aviation, as a whole, burned 77 million

gallons of fuel, releasing 733 million metric tons (MMTs) of CO2 in 2014 [10]. By the

time of 2018, 905 MMTs of CO2 have been emitted due to the consumption of 95 million

1In fact, a significant reduction of the air travel has been seen in 2020 instead of the predicted increase,
due to the global pandemic of COVID-19 (https://www.who.int/emergencies/diseases/novel-cor
onavirus-2019) and the associated travel restrictions. International Civil Aviation Organization (ICAO)
has predicted an overall reduction of air passengers (both international and domestic) ranging from 35%
to 65% in 2020 compared to 2019, while International Air Transport Association (IATA) projected a 48%
decline of revenue passenger kilometers [5]. However, with more careful operational guidelines [6] and
mitigation of the pandemic, we expect a steady recover of the aviation industry.

1

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019

gallons of fuel [10], showing an increase of 23% over the past five years. On the other hand,

aircraft noise is the most significant cause of community annoyance to the operation of

local airports [7] and has long time been an obstacle preventing the embrace of supersonic

business jets [11, 12].

Fortunately, the industry has foreseen the increasing effects on environment and has

committed to reduce its environmental footprint. The International Air Transport As-

sociation (IATA) and the International Civil Aviation Organization (ICAO) have estab-

lished several ambitious goals until 2050 to mitigate or reduce CO2 emissions, largely

stimulating the increase of fuel burn efficiency of new commercial aircraft. Meanwhile,

airline profitability is another classical thrust for improving aircraft efficiency, since fuel

consumption accounts for more than 20% of an airline’s operating cost. On the other

hand, the reduction of noise emissions mainly relies on new standards adopted by agen-

cies and the participation of countries. Many efforts, including engine improvements and

drag reduction techniques have been devoted to meeting these concerns in aircraft design,

making the modern commercial jets 80% more efficient [13] and 75% quieter [14] than

their first-generation ancestors. However, new improvements are becoming marginal and

more difficult to achieve with more and more refined aircraft designs over generations.

An alternative solution that has drawn much attention in recent years is that of un-

conventional aircraft configurations, including the blended wing body (BWB) [15], the

jointed wing [16], the strut-braced wing [17] and the “double bubble” (D8) concept [18].

Figure 1.1 lists some examples of these unconventional configurations. Those configu-

rations are promising as a considerable amount of efficiency improvement and emission

reduction can be achieved just by the design shift from traditional single-tube-wing con-

figurations. For example, the BWB configuration is predicted to obtain a 30% reduction

in fuel burn per seat compared to a similar-sized conventional design (Airbus A380-700)

using equivalent technology engines [15]; later on research also showed that the engine

noise can be significantly reduced due to the shielding effects associated with the upper

surface engine installation [19] for the BWB configuration.

Given the big potential to be more efficient and environmentally friendly, many design

studies have been conducted on these configurations [20, 21, 22, 23, 24, 25, 26], most of

which lie in extensive simulation-based aerodynamic shape optimization. However, un-

like the well-established design philosophy and the good understanding for the traditional

aircraft, there is no good way to evaluate the quality of the unconventional designs, even

for experienced practitioners. Instead, the design largely relies on the numerical simula-

tions rather than any reference database or empirical knowledge, such that it is critical

to increase the confidence of the numerical solutions. Moreover, due to the lack of expe-

2

(a) BWB concept (b) joined-wing concept

(c) struct-braced wing concept (d) D8 concept

Figure 1.1: Examples of unconventional aircraft configurations. Retrieved from https:

//www.nasa.gov/content/down-to-earth-future-aircraft-0.
.

rience and limited intuitions, a fairly large design space needs to be explored to increase

the chance of finding the optimal design. In order to enable fast unconventional design

in practice, the design tools have to be highly automated to avoid unnecessary human

interference and be efficient enough to reduce the turnaround time. Due to the exorbitant

cost and business risk associated with the development of these novel configurations, the

author believes that these issues/challenges have to be addressed before a credible effort

in further development is undertaken.

1.2 Challenges in Aerodynamic Optimization

Aerodynamic shape optimization dates back long before the prevalence of CFD, when

analytical flow solutions were used to determine the optimal shapes in design problems.

Examples include the famous optimal elliptic lift distribution for fixed-span wings, and

the Sears-Haack body that produces lowest wave drag in supersonic flows. However,

these analytical solutions are restricted to relatively simple geometries under potential

3

https://www.nasa.gov/content/down-to-earth-future-aircraft-0
https://www.nasa.gov/content/down-to-earth-future-aircraft-0

flow assumptions, with or without compressibility corrections. Due to highly nonlinear

nature of the flow governing equations, analytical solutions are largely unavailable and

inadequate for design purposes.

Over the past 60 years, aerodynamic optimization has benefited greatly from the de-

velopments of computational fluid dynamics. The fast turnaround time, high degree of

geometric flexibility, relatively low costs and almost arbitrary test conditions offered by

CFD have made it an attractive tool for aerodynamic design since the 1970s. Hicks

et al. [27] first studied the feasibility of using gradient-based numerical optimization in

airfoil design problems, which was then extended to aircraft wing designs by Hicks and

Henne [28]. These early attempts are based on potential flow simulations, with sensi-

tivities obtained using finite difference methods. Since then, a variety of research efforts

have been devoted to improving the accuracy and efficiency of both the flow simulations

and the sensitivity calculations. With many fundamental contributions made from the

1970s to the 1990s [29], practical CFD is now capable of simulating the aerodynamic flows

around complete aircraft configurations with turbulence modeling. In the context of sensi-

tivity analysis, finite differences are certainly not the best choice as they require repeated

flow solutions for each gradient component and often suffer from rounding errors. More

favorable techniques have been developed during the past several decades, including the

complex step method [30], algorithmic differentiation [31] and the adjoint method [32].

Among these, the adjoint method has been the most popular for derivative calculations

since the pioneering work of Jameson [32, 33, 34]. Although the importance of CFD can-

not be overstated in aerodynamic optimization, adjoint-based sensitivity analysis is the

critical component that enables the use of CFD in large-scale practical aerodynamic opti-

mizations [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. Together with rapidly increasing

computational power, CFD-based aerodynamic optimization has been pushed to further

superiority over traditional methods, such that aerodynamic optimization today is mainly

referred to as numerical optimization based on CFD simulations.

Besides the extensive use of CFD and adjoint-based sensitivity analysis, aerodynamic

optimization also features several other components, including geometry parametriza-

tion methods, mesh deformation techniques, and numerical optimization algorithms. A

complete aerodynamic optimization workflow requires a set of selections from each com-

ponent, as sketched in Figure 1.2. Even though gradient-free optimization algorithms

can also be applied to aerodynamic optimization problems, they in general require more

function evaluations, i.e., flow solutions, to converge [47]. The costs can be prohibitively

expensive for high-dimensional problems [48], regardless of their improved robustness in

non-smooth or non-convex problems. Therefore, gradient-based optimization has always

4

been the predominant approach in aerodynamic optimization, not only for legacy reasons

but also for practical considerations. Many open-source or commercial gradient-based

optimization libraries are available [49, 50, 51] and can be easily integrated with aero-

dynamic optimization as long as the sensitivity is accurately calculated. For geometric

parametrization, an in-depth review can be found in [52], while [53] contains a detailed

survey of the mesh deformation techniques.

Geometry Mesh Generation

Working Mesh

Sensitivity
Analysis

Flow SolverDesign Variables

Optimizer

Geometry
Parametrization

Mesh Deformation

Converged?

No

Design
Assessment

Final Design

Optimized Design Yes

Figure 1.2: An example of an aerodynamic optimization workflow. The essential modules
are highlighted in gray boxes.

With proper integration among different components, aerodynamic optimization itself

can be a highly automated process, requiring minimal human interference. However, the

total elapsed time for aerodynamic optimization should include the time to set up the

optimization and the time spent on assessing the quality of the final designs. The efforts

in setting up the optimization mainly reside in the mesh generation for the original design,

while the design assessment is typically performed on the final converged design. Unlike

numerical optimization, these two processes rely heavily on the user’s experience. The

reliance on experienced practitioners imposes many challenges in the use of aerodynamic

optimization for practical design, especially for unconventional configurations where the

engineering experience is largely unavailable.

1.2.1 Design Automation

If we consider the mesh generation and the design assessment more carefully in Fig-

ure 1.2, a more thorough aerodynamic design process including the optimization setup

5

and the design evaluation can be described, as illustrated in Figure 1.3. Although the

aerodynamic optimization itself (green part) can be made highly automated, the prob-

lem setup (pink parts) and the design assessment (blue part) usually requires excessive

human involvement. The optimization problem setup often involves choosing an opti-

mization framework (green part), defining the optimization objective, imposing design

constraints, and obtaining a starting computational mesh (pink part). Among these, gen-

erating a suitable starting mesh is typically the most time-consuming part, and has long

time been a bottleneck even for standalone CFD simulations.

Starting MeshGeometry Good Mesh?
Validation/User

Assessment
Mesh Generation Flow Simulation

Solver Failure

No

Geometry
Parametrization

Module

Mesh Deformation
Module

Flow Solver Module

Sensitivity Analysis
Module

Geometry
Modification/Simplification

Good Design?
Design

Assessment
YesFinal Design

No

Optimizer Module

Yes

Optimized Design

Figure 1.3: Aerodynamic design process including the problem setup and the design
assessment.

Obtaining a good computational mesh for optimization, or even for a single CFD sim-

ulation is a nontrivial task, especially for complex geometries. It may take days or weeks

to generate a suitable mesh around an aircraft, even by experienced meshing practition-

ers [54]. Enough resolution, i.e., mesh elements, has to be put in regions that involve the

most important flow features, e.g., boundary layers, wakes and shocks, in order to achieve

the required accuracy. However, these flow features are only known a-posteriori. As a

result, mesh generation in practice extensively relies on experience or physical intuition

of the possible solution field around the considered geometry. On the other hand, the

generated mesh can be validated against existing experimental data to assess the quality

of the mesh 2. Due to the limited availability of validation data, mesh quality judg-

ment through visual inspections by expert users is still the most common practice. The

2Assessing mesh quality, i.e., numerical errors associated with the mesh, is in fact a verification
exercise. Validating against experimental data to assess mesh quality assumes the physical model is well
chosen.

6

heavy reliance on expert knowledge has made mesh generation a tedious task and a main

bottleneck for many applications of CFD. Furthermore, this difficulty can be worse in

aerodynamic optimization, since the available experience in meshing complex geometries,

such as unconventional configurations, is not available in the first place. Furthermore,

even when generated with best practice guidelines, the mesh has to go through many

remeshing iterations based on extensive mesh/solution assessment by experienced mesh-

ing and aerodynamic experts, before it can be finally used to set up an optimization.

In addition, the starting mesh is generated based on the initial design, with no guar-

antee of adequacy throughout the entire optimization search path. In order to improve

the automation of the aerodynamic design process and to reduce the overall design cycle

time, a better meshing paradigm should be developed to accelerate mesh generation, with

allowance to ensure mesh quality during the optimization.

1.2.2 Design Assessment and Reliability

A natural and possibly most important question for aerodynamic shape optimization

is: how good is the final optimized design? Due to the high costs associated with wind

tunnel and flight tests, the design obtained using aerodynamic optimization has to be

carefully examined before any further development is taken. Often in practice, this is

investigated after the optimization run, as shown in Figure 1.3, judged by experienced

aircraft designers or through high-fidelity simulations on the optimized design. For com-

plex flow simulations or unconventional configurations, the available physical intuition is

limited, such that the design assessment has to largely rely on high-fidelity simulations

on the optimized design. The optimization objective functional and the constraints need

to be checked on relatively finer computational meshes compared to the one used in the

optimization.

To aid the assessment of aerodynamic optimization, a series of benchmark cases have

been launched in the Aerodynamic Design Optimization Discussion Group (ADODG)

organized by the American Institute of Aeronautics and Astronautics (AIAA). These

benchmark cases are intended to provide identical test cases for comparison among state

of the art optimization frameworks, which have driven many research efforts on the corre-

sponding developments [55]. Unsurprisingly, evident differences on the optimized designs

and the corresponding aerodynamic performance are observed despite the overall agree-

ment, even on “simple” two-dimensional airfoil optimization cases [56, 57]. However,

with so many components affecting the optimization, it is extremely difficult to isolate

the influence of each individual component. Luckily, in general, the development costs

associated with geometry parametrization and mesh deformation are relatively low, and

7

many optimization libraries are readily available for these tasks. Therefore, it is possible

to eliminate the effects from these components, leaving the design uncertainty mainly in

the accuracy of CFD solutions and the sensitivity calculations.

After the optimization has been set up, candidate designs are searched along the direc-

tion built on the sensitivity analysis. Design with sufficient performance improvements

predicted by the CFD solver will be accepted and be used to advance further design

updates. As we can see as well in Figure 1.4, the optimizer heavily depends on the in-

formation provided by the flow simulations and the sensitivity calculations. However,

there are many error sources existing in these analyses, which can pollute the informa-

tion sent to the optimizer and hence affect the optimization results. The errors include

the modeling errors when the real-world system is modeled with simplified assumptions,

i.e., incompressible or inviscid flow, the numerical errors during the discretization of the

flow governing equations on a finite-dimensional space, and the convergence errors when

solving the discretized system of equations.

Numerical Simulations

Converged ?

F
inite

D
ifference

Optimizer Analysis

Outputs
Evaluations

Search Direction

Line Search

Yes

Sensitivity
Analysis

C
om

lex S
tep

A
lgorithm

ic
D

ifferentiation

No

Reality
Modeling Errors

Governing
Equations

System of
Equations

Numerical
Solution/Data

Discretization Errors

Convergence Errors

A
djoint

A
nalysis

Figure 1.4: Numerical errors in aerodynamic optimization.

Modeling errors inherent to the governing equations can be reduced by model valida-

tion or by choosing more complex models. Although direct numerical simulation (DNS)

and large eddy simulation (LES) have been developed for several decades, they are limited

to moderate Reynolds numbers and relatively simple geometries, yet require extremely

high computational costs. Reynolds-averaged Navier-Stokes (RANS) simulations with

turbulence modeling are still the state of the art physical models used in aerodynamic

optimization. Meanwhile, some simplified models such as inviscid Euler equations or even

potential flow models are still used in aerodynamic optimization. The convergence errors,

on the other hand, are easier to handle thanks to the developments in numerical algo-

rithms and solution acceleration techniques. Therefore, the convergence errors are often

8

controlled to be sufficiently small compared to the errors from the other sources.

Given the availability of high-fidelity models (though some may not be computationally

feasible yet) and the capability of solving the discretized system accurately and efficiently,

another liability that needs to be dealt with is to ensure that the discretized system

we are solving approximates the chosen physical models accurately. Compared to the

physical intuition available to choose the models and the flexibility of setting convergence

tolerances in the numerical solver, the choice of suitable discretization, especially the

computational mesh, is not a trivial task even for experienced designers. As mentioned

in Section 1.2.1, mesh generation is a trial-and-error process, requiring extensive human

involvement. More importantly, the uncertainty associated with the discretization, i.e.,

the numerical errors induced by the discretization, cannot be quantified easily just based

on the user’s experience.

One thing to be noted is that these errors exist even in a single CFD simulation. Even

before the ADODG, AIAA held a series of Drag Prediction Workshops (DPWs) [58, 59,

60, 61, 62], aiming to assess the state of the art computational methods as practical aero-

dynamic tools for aircraft force and moment prediction on industry-relevant geometries.

Although the results were rather disappointing in the first workshop [58], it served as a

reminder to the CFD community that CFD is not a matured field. As expected, the main

differences in the submissions were due to modeling and discretization errors. Further-

more, an emerging consensus after the first three DPWs was that the dominant sources of

error in aerodynamic drag prediction are related to spatial discretization error, which in

turn stems largely from mesh resolution and mesh-quality issues [63]. Therefore, a greater

emphasis has been placed on the mesh generation and mesh convergence studies in the

fourth DPW. With more careful requirements on the computational meshes, the drag

variation in DPW-IV was dramatically reduced, spanning only 41 drag counts if omitting

the largest outlier, as shown in Figure 1.5 for the Common Research Model (CRM) geom-

etry. In order to further reduce the mesh-induced error, a set of unified baseline families

of multi-block structured meshes was provided in DPW-V, from which the overset and

unstructured meshes are also defined. A even tighter scatter and smaller standard devia-

tion were achieved compared to the results in DPW-IV, see Figure 1.5. However, the most

recent DPW-VI, without using unified meshes, again shows comparable spread of drag

predictions as DPW-IV [64, 65]. These facts reinforce the importance of mesh-related

discretization errors and the difficulties in generating appropriate computational meshes

in CFD applications. More importantly, without sufficient control of the discretization

errors, improvements in physical models can be either inconsequential or impossible to

assess in the presence of dominant spatial discretization errors [63].

9

0 10 20 30 40
Solution index

0.025

0.026

0.027

0.028

0.029

D
ra

g
co

e
ffi

ci
e
n
ts
C
d

DPW-IV CRM

DPW-IV mean

DPW-IV 1 Std Dev

DPW-V CRM

DPW-V mean

DPW-V 1 Std Dev

Figure 1.5: Drag coefficients scatter from DPW-IV and DPW-V, reproduced using data
from [61, 62]. The largest outlier is removed from the original data set in both scatters.
The offset of the mean values between DPW-IV and DPW-V is due to a slightly different
CRM geometry, while the difference of the drag spread is mainly due to the computational
meshes.

Rather than the absolute drag values, the incremental drag, such as the drag changes

between two similar configurations, is of more importance in aerodynamic optimization.

With best-practice meshing guidelines, a sufficiently fine mesh is able to capture the

overall performance trend in the design space. Using the same CRM geometry, Lyu et

al. [42] obtained similar designs using a set of meshes with different resolutions. However,

the corresponding drag predictions and the chord-wise pressure distributions on the final

designs are noticeably different. Moreover, in their study, the favorable “shock-free”

design on a coarse mesh does not remain so when analyzed on finer meshes, indicating

the discretization errors associated with the coarse mesh “shock-free” designs.

Although accurate incremental drag prediction is often less demanding than absolute

drag prediction, it still depends heavily on the quality of the computational meshes. For

some simulations involving complicated physics, even reliable incremental drag predictions

can be difficult to obtain [63]. As shown in Figure 1.4, these inaccurate data will be used

sequentially by the optimizer and can strongly affect the optimization results and the

corresponding accuracy [66, 67]. Figure 1.6 shows two optimization examples where the

results are strongly affected by the discretization errors, which will be studied in more

details in Chapter 6. On the left, i.e., Figure 1.6a, an optimization problem governed by

a one-dimensional advection-diffusion partial differential equation (PDE) is considered.

The numerical solution is obtained by solving the system on a coarse uniform spatial

discretization. There is only one local minimum for the original continuous problem, while

for the discrete numerical solution, we find a spurious local minimum purely caused by

10

numerical errors induced by the discretization. On the right, Figure 1.6b shows on top the

optimized design of an airfoil optimization problem obtained on a coarse discretization,

and on bottom the re-analysis of the same design on a refined discretization. Similar

to the findings in [42], the “shock-free” design on the coarse discretization is associated

with discretization errors, which indicates that the efforts to achieve “shock-free” features

on the coarse discretization may be tied to discretization errors rather than physics.

Therefore, if the discretization errors are not carefully controlled, the optimizer may (a)

get stuck in a spurious optimum created by discretization errors, or (b) work on the

discretization errors rather than on the physics and converge to an incorrect optimum.

Due to the strong influence of the discretization errors on both the absolute and

incremental drag predictions, discretization errors have to be carefully controlled during

optimization in order to converge to a reliable design. Another drawback of the current

aerodynamic optimization is the open-loop after-design assessment paradigm, as shown

in Figure 1.2. Despite the extensive human involvement in the design assessment, any

design deficiency, including unmet performance or constraints, may not be easy to revert

and may require a rerun of the whole optimization process with a better design or refined

computational mesh. Considering the efforts required for mesh generation, the overall

turnaround time may be undesirably factored. In order to avoid this as much as possible,

the aerodynamic optimization paradigm needs to be improved such that the solution

accuracy can be assessed during the optimization to ensure the reliability of the optimized

design, at least in terms of the discretization errors.

1.2.3 Computational Efficiency

By virtue of the fast growing computational capacity, high-fidelity CFD simulations

are now routinely carried out in aerodynamic optimizations. Nevertheless, high-fidelity

aerodynamic optimization still remains computationally taxing because each evaluation

of the objective function requires an expensive high-fidelity CFD solution. Although high-

fidelity aerodynamic optimization enables aircraft engineers to perform detailed designs

and to extend their intuition and experience in unconventional configurations, the com-

putational resources needed for high-fidelity design preclude its wide-spread use. The

term “high-fidelity” often refers to accurate physical models and high mesh resolutions.

As mentioned in Section 1.2.2, high-fidelity models like DNS and LES are currently too

expensive for optimization problems, RANS models considering transition effects and de-

tached eddy simulation (DES) might be the next step of aerodynamic optimizations. On

the other hand, “high-fidelity” refers to using sufficiently fine computational meshes. Due

to the high solution sensitivity to the computational mesh, “high-fidelity” simulations

11

Design variable

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n Spurious optimum

Numerical solution

Exact solution

Inaccurate optimum

Exact optimum

(a) one-dimensional advection-diffusion (b) transonic airfoil optimization

Figure 1.6: Examples of discretization error effects in optimization. The left figure shows
the numerical and exact objective functional versus design variable in an optimization
governed by a one-dimensional scalar advection-diffusion PDE. The right figure shows the
Mach number contour of the optimized airfoil shape obtained on a coarse discretization,
and its reanalyzed solution on a refined discretization; The Mach number contour range
is [0, 1.35].

often come with low confidence if no a posteriori analysis is performed. One alternative

can be generating meshes that are extra fine to ensure solution accuracy. However, in

this case, the computational expenses quickly makes large-scale aerodynamic optimization

computationally intractable or impossible.

In order to save the computational burden of high-fidelity optimization, multifidelity

optimization has been widely used because of its potential of reducing the overall compu-

tational costs by using cheaper low-fidelity simulations at the early stages of the optimiza-

tion, either through lower-fidelity physical models or via coarse computational meshes.

However, often there is no readily available knowledge about the confidence of the lower-

fidelity simulations, such that the tolerances during the optimization are either always set

to be the ultimate optimization tolerance, or varied purely based on users’ experience or

intuition. Although the multi-fidelity optimization is in general more efficient than tra-

ditional fixed-fidelity optimization, the current setup may hinder its potential of saving

computational resources. On the one hand, if the low-fidelity optimization tolerance is set

to be too loose, the optimizer will not be able to take advantage of cheaper low-fidelity

computations to improve the design. On the other hand, if the optimization tolerance is

set to be too tight at the lower fidelity, the optimizer may work on the numerical errors

instead of physics to improve the design. Consequently, the optimization on the highest

fidelity has to work on undoing these incorrect design modifications to bring the design

12

back to physically optimal, as shown in Figure 1.6b. In order to improve the compu-

tational efficiency in aerodynamic shape optimizations, a more appropriate strategy of

actively varying the optimization tolerance during the optimization shall be developed.

1.3 Opportunities for Adaptive CFD in Aerodynamic Optimiza-

tion

As discussed in the previous sections, several key challenges for current aerodynamic

optimizations are: design automation, solution reliability, and computational efficiency.

A cure for these obstacles is using high-order output-based adaptive CFD methods to

achieve high-fidelity aerodynamic optimization. The favorable computational efficiency

of high-order methods helps the optimization objective and constraint outputs converge

faster than traditional second-order CFD methods. Output error estimates, on the other

hand, provide a measure of confidence in the solutions during the design process. The

capability of refining the mesh during optimization allows starting the optimization with

fairly coarse meshes, significantly reducing the efforts in optimization setup. Moreover,

the adaptive meshes offer various fidelity, combined with output error estimates, giving

a systematic and robust way of controlling the fidelity switch in a multifidelity setting.

This section gives a brief introduction of high-order CFD methods, output-based error

estimation, and mesh adaptation, as well as the strategy for applying them in aerodynamic

optimization problems.

1.3.1 High-Order CFD Methods

Generally speaking, the discretization error in a CFD solution is on the order of O(hr),

where h is the characteristic mesh size and r is the solution error convergence rate, i.e.,

the order of the accuracy for the CFD method. A CFD method is considered high-order

if it possesses an order of accuracy greater than two, r > 2. Therefore, in order to

achieve similar accuracy, low-order methods will require more refined meshes, while high-

order methods can use coarser meshes by taking advantage of higher convergence rates.

The time step restriction, which is often inversely proportional to the mesh size, makes

the high-order methods even more favorable in time-dependent simulations. Despite more

complicated implementations, high-order methods are in general more efficient for smooth

problems than traditional prevalent second-order finite-volume methods. For non-smooth

problems, e.g., flows involving shocks, high-order methods are not superior than low-

order methods as the accuracy is vastly reduced due to the non-smoothness present in the

solution. Fortunately, combined with solution-based adaptation, high-order methods are

13

able to recover the desired accuracy by isolating the non-smooth flow features. Although

high-order methods are widely agreed to be more efficient than second-order finite volume

methods, the lack of stability and robustness, as well as the software complexity when

adaptation is adopted, have largely impeded their recognition in industry [68, 69]. On

the other hand, the dominance of second-order methods in current CFD applications is

primarily due to their robustness and high flexibility, which have been made possible by

a considerable amount of research effort from the 1970s to the 1990s [29].

Although the current workhorse of CFD in aerospace applications, e.g., aerodynamic

optimization, is still the second-order finite-volume method, emerging high-fidelity re-

quirements in many applications have brought to bear the importance of high-order meth-

ods. For example in aeroacoustic predictions and transition simulations, we are interested

in small perturbations that are orders of magnitude smaller than the mean flow quan-

tities. Over-dissipation of second-order methods tends to kill these small perturbations

quickly and leads to inaccurate predictions. These are of particular interest for future

aerodynamic optimization, since noise emission will be one of the important metrics in

future aircraft design as mentioned in Section 1.1, and transitional modeling is essential

to reduce the errors in physical models to achieve reliable designs.

During the past several decades, much attention in CFD developments has been paid

to high-order methods, including spectral difference [70, 71, 72], spectral volume [73, 74],

flux reconstruction or correction procedure via reconstruction [75, 76, 77, 78], continuous

Galerkin (CG) [79, 80], and discontinuous Galerkin (DG) [81, 82, 83, 84, 85]. Among

them, DG offers several advantages and is the discretization utilized in this work. First,

compared to finite-volume and finite-difference methods, the variational formulation of

the DG method lays a rigorous mathematical foundation for output error estimation and

mesh adaptation. In addition, finite-volume like numerical fluxes adopted in DG buy

its great stability for convection terms, which dominate in many aerospace engineering

applications. Moreover, compact stencils offered by DG make it easily parallelizable on

current multi-core processors. In addition, the high arithmetic intensity and local memory

access pattern of DG make it well-suited for fast-paced graphics processing units (GPUs)

and emerging heterogeneous high performance computing (HPC) architectures, which

have been considered as a key to achieving petascale and exascale computing.

1.3.2 Output Error Estimation

As discussed in Section 1.2.2, quantifying the uncertainty due to discretization errors

is essential for successful use of CFD in aerodynamic optimization. Unfortunately, this

liability cannot be managed easily even by expert practitioners. In particular, an error

14

estimate of the outputs used in aerodynamic optimization ensures that the predictions

of CFD solutions are only used to the limits of their accuracy, which can significantly

reduce the chances of converging to spurious optima related to numerical errors. On

the other hand, reliable error estimates give a measure of confidence for the designs

obtained by aerodynamic optimization. However, error estimation itself cannot ensure

the design reliability during optimization unless used in conjunction with adaptation to

actively control the errors. Active error estimation and error control through adaptation

are the keys to avoiding defect designs and after-design trade-offs. A brief review of using

output-based error estimation and mesh adaptation in aerodynamic optimization is given

in Section 1.3.4.

Since the exact solutions of flow governing equations are largely unavailable, discretiza-

tion error in the numerical solution can only be estimated. Error estimation often falls

into two categories: a priori and a posteriori. The former approach is heavily used in the

early development of numerical methods, characterizing the convergence and stability of

the methods. However, a priori error estimation often relies on parameters not known

a priori, leaving the error bounds of limited usefulness in practice. In contrast, a poste-

riori error estimation is performed after obtaining the discrete numerical solution. The

solution error can be derived through interpolation theory a priori, while the unknown

parameters such as the solution Hessian can then be approximated by available numerical

solutions [86]. Zienkiewicz and Zhu proposed a method to estimate the solution error by

comparing the numerical solution with its reconstructed counterpart [87], which can be

obtained by, for example, smoothing the solution gradient. Or alternatively, the solution

error can be measured under the operators defined by the continuous governing equa-

tions or discretized ones on a finer discretization, often termed as residual errors [88, 89].

These methods all focus on estimating the solution error norms, which are also called

energy-based estimators in the finite-element community. Such types of error estimators

are covered in depth by Ainsworth and Oden [90, 91]. For the performance and robustness

of different energy-based estimators, see studies conducted by Babuška et al. [92, 93].

The error estimated by the energy norm usually provides effective local error indicators

for adaptation purposes. However, it relies on the assumption that local error only depends

the local resolution, which holds well for elliptic problems such as those of the elasticity

equations. However, for hyperbolic systems, such as high-speed flow simulations, errors

can propagate by the convection-dominant nature of the system, making the prediction

of regions requiring high resolution non-intuitive. To control local errors in hyperbolic

systems, we need to trace the source of the error which may be far away, e.g., some

errors occurring down-stream may heavily depend on the accuracy of up-stream solutions.

15

Furthermore, often in engineering applications, we are only interested in some scalar

outputs, i.e., drag and lift, instead of the bulk flow solutions. Although outputs like drag

and lift only depend on the solution integral on the geometry surface, they are sensitive

to perturbations far away from the object surface, e.g., ahead of the object and in its

wake. Luckily, adjoint variables are able to identify the sensitivity of the output with

respect to local solution errors, i.e., flow equation residuals, providing a robust way of

accounting for the error transport effects in hyperbolic systems. The adjoint variables

weight the local flow residual to form an error measure of the output of interest, which

can be used to provide error bounds or pure signed corrections of the output. Adjoint-

based output error estimation, also known as the dual weighted residual (DWR) method,

was pioneered by Becker and Rannacher [94], and Pierce, Giles, and Suli [95, 96]. The

straightforward localization of the dual-weighted residual makes it easy to identify the

regions that are important for accurate output predictions. Solution-adaptive methods

via adjoint-based output error estimation have dramatically improved the accuracy and

efficiency of CFD [85, 97, 98, 99, 100]. A detailed review focusing on aerospace applications

is given by Fidkowski and Darmofal [101].

Despite the effectiveness of adjoint-based error estimation, it requires solving a dual

linear system of the same size, or larger when solving on enriched spaces, as the flow

primal problem. The additional memory and computational costs associated with the

adjoint solutions, in addition to the implementation costs, hinder the effective use of

adjoint-based error estimation methods in unsteady problems or in a many-query setting.

More recently, error surrogate models based on machine learning techniques have received

much attention, largely because of their non-intrusive nature and fast on-line evaluations.

Several contributions have been made in error modeling for parameterized reduced-order

models (ROMs) [102, 103], and the ideas have been extended to estimate discretization-

induced errors [104]. Efforts have also been devoted to predicting the errors in flow

solutions and the outputs of interest obtained on coarse computational meshes [105, 106],

and the models have been used to guide the selection of a set of a priori meshes [107].

Nonetheless, in these studies, no output error indicator is provided to perform mesh

adaptation. Manevitz et al. [108] used neural networks to predict the solution gradients in

time-dependent problems, which then provided an indicator to drive the mesh adaptation.

However, feature-based adaptive indicators are generally not as effective as adjoint-based

indicators, especially for functional outputs and problems with discontinuities [109, 101].

Furthermore, these works rely on a set of user-selected local features (feature engineering)

to construct the model, requiring either expert knowledge or fine tuning. Moreover, due

to the local nature of the selected features (although some neighboring information comes

16

in with the gradient features), these models either largely ignore the error transport, and

thus are not expected to be effective for convection-dominated problems, or still require

the adjoint variables to bring in the global sensitivity information.

1.3.3 Mesh Adaptation

Error estimation gives a measure of confidence in the numerical solutions, and, if

appropriately localized, is able to identify the regions that produce the majority of the

errors. In order to control the solution accuracy, a natural idea is to enrich or modify

the solution space in areas that are responsible for most of the errors. In high-order

finite-element methods, the solution space depends on the local mesh resolution h and

the approximation order p. Thus, solution approximation can often be improved through

refining the local mesh resolution (h-adaptation), increasing the local approximation or-

der (p-adaptation), or a combination of both (hp-adaptation). Standard adaptive CFD

frameworks often adopts a feedback loop: the discretized governing equation is solved

in the space defined by the current mesh and approximation order distribution; then the

discretization error is estimated and the solution space is enriched or modified correspond-

ingly, and a new solution is obtained on this space. This process repeats until some error

or cost tolerance is met, ensuring solution reliability in an automatic way with minimal

human interference.

p-adaptation is more efficient in smooth problems and requires less implementation ef-

fort compared to h-adaptation, as local approximation order can be easily increased. The

drawbacks, however, are also evident. The accuracy gains are limited in regions where the

solution exhibits discontinuities. Indeed, the order increase can make high-order methods

even more vulnerable to stability issues around discontinuities. On the other hand, h-

adaptation is more effective in isolating the discontinuities, though the order of accuracy

is still bounded by the approximation order. Meanwhile, the mesh modification, either

through local mesh operations or relying on global re-meshing, significantly increases the

software complexity. hp-adaptation, a combination of the two, if implemented appropri-

ately, is able to achieve great error convergence by increasing local approximation order,

i.e., p-adaptation, in regions where the solution is smooth while isolating the singular-

ity or discontinuity through h-adaptation. However, automatic decision of performing

p-adaptation or h-adaptation requires more algorithmic work.

Another important benefits of mesh adaptation, which is often understated, is that the

adaptation procedure greatly reduces the time and effort required to generate appropriate

meshes for complex geometries. Fairly coarse meshes that are easy to generate can be

used to start the simulation. Adaptation will then put enough resolution in suitable

17

regions based on the localized output error estimates. Take the DPW-VI CRM geometry

as an example. Creation of a sequence of fixed meshes requires an expert user over 3

weeks to match the best-practice meshing guidelines. In contrast, adapted meshes can

be generated without human intervention, requiring less than two days of user time to

generate a coarse initial mesh and start the adaptive run [54].

In this work, only h-adaptation is performed, while the approximation order p is kept

fixed and uniform in the mesh. The benefits of p-adaptation and hp-adaptation will be

investigated in future work. As in aerodynamic optimization, outputs like drag and lift

are of more interest than the flow solution, and therefore adjoint-based output error es-

timation is used to drive the mesh adaptation. The localized output error can provide

effective indicators for mesh adaptation, yet no solution anisotropy information can be

directly obtained in adjoint-based estimators. In areas featuring strong directional phe-

nomena, anisotropic mesh elements are necessary to achieve better adaptation efficiency.

Two methods are considered in this work to detect solution anisotropy. One is through

the incorporation of solution interpolation errors, and the other is using an optimization

framework built on a continuous mesh formulation. More details on this are given in

Chapter 4. To further increase the computational efficiency and to reduce the implemen-

tation cost of the traditional adjoint-based mesh adaptation, machine learning techniques

are also introduced to accelerate the mesh adaptation, which can be found in Chapter 8

and Chapter 9.

1.3.4 Aerodynamic Optimization With Adaptive CFD

Given the capacity of adapting meshes automatically and putting necessary resolution

in regions responsible for discretization errors, error estimation and mesh adaptation are

able to significantly reduce the optimization setup efforts, i.e., mainly the initial mesh

generation [54]. The systematic feedback control of the discretization error, on the other

hand, ensures the accuracy of the design analysis during optimization. Meanwhile, the

error estimates give a measure of confidence for the optimizer, such that the CFD results

are only used to the limits of their accuracy. This “in-design” assessment, enabled by

error estimation and mesh adaptation can significantly reduce the chance of converging

to undesired designs due to numerical errors and increase the reliability of the optimized

design. A new paradigm for aerodynamic optimization with error estimation and mesh

adaptation is depicted in Figure 1.7, in which the user only needs to provide a coarse mesh

and the optimization will output the optimized design with discretization error controlled

through automatic error estimation and mesh adaptation. The details of the coupling

between different optimization components are discussed in Chapter 5.

18

Coarse MeshGeometry Mesh Generation

Geometry
Parametrization

Module

Mesh Deformation
Module

Flow Solver Module

Sensitivity Analysis
Module

Optimizer Module

Optimized Design

Error Estimation and
Mesh Adaptation Module

Adapted Mesh
Discretization error controlled

Reliable Optimized Design

Figure 1.7: Aerodynamic optimization with error estimation and mesh adaptation.

The idea of coupling error estimation and mesh adaptation with gradient-based opti-

mization is rather new. Energy-based estimators can be effective and robust for driving

adaptation in elliptic PDEs like those of structural elasticity, and thus several contribu-

tions have been made to incorporate these approaches into structural optimization prob-

lems [110, 111, 112]. However for hyperbolic systems, such as those governing aerodynamic

fluid flows, errors can propagate by the convection-dominant nature of the system, making

energy-based type estimators inefficient, especially for scalar outputs. Therefore, adjoint

weighted residual (AWR) is more popular for CFD applications, in which the sensitivity of

the output to residual perturbation is identified by the adjoint solutions and the weighted

residual is used to drive the adaptation.

The idea to combine adjoint-based output error estimation and mesh adaptation

with traditional gradient-based optimization is natural, as both methods require out-

put adjoint solutions, making the incorporation more efficient. Even though adjoint-

based error estimation and mesh adaption have been studied in depth and successfully

demonstrated in many aerospace engineering problems, their application to optimization

problems has received less attention. Lu [113] incorporated adjoint-based error estima-

tion and p-adaptation into gradient-based optimization. The constraints are realized as

simple quadratic penalty functions added to the objective. Progressive optimization is

used with mesh adaptation based on the error of the penalized objective. Nemec and

Aftosmis [114, 115] modified the penalty terms to avoid vanishing of the constraint error

when the constraints are satisfied. Li and Hartmann [116] eliminated the constraint by

trimming with an individual design variable, and introduced a multi-target adaptation

19

algorithm in which mesh adaptation targets the objective and constraint outputs equally

on a fixed fidelity. Hicken and Alonso [66] used the gradient norm error as the refinement

indicator to actively control the first-order optimality condition, while higher-order deriva-

tives needed to be approximated. In most previous works on optimization combined with

error estimation, mesh adaptation has only been used to add refinement. However, in or-

der to control the discretization error during the optimization, the mesh may be adapted

in many areas that are important for the intermediate designs but are not necessary for

the final optimal design, which may decrease the efficiency of the high-fidelity optimiza-

tion. Therefore, to fulfill the potential of adaptive CFD in aerodynamic optimization,

more advanced adaptation mechanics have to be used, such that mesh resolution can be

not only refined but also redistributed to avoid unnecessary refinements for intermediate

designs.

1.4 Thesis Overviews

1.4.1 Major Contributions

In order to tackle the problems mentioned above, the goal of this thesis is to develop

methods to increase the reliability, automation and efficiency of the optimization process

in aircraft design. The main contributions of the current work include:

• Developed a more appropriate error estimator for optimization objective output,

taking into account the errors from constraint outputs as well.

• Incorporated adaptive CFD with traditional gradient-based optimization, enabling

automated and reliable optimization.

• Proposed multifidelity optimization frameworks suitable for both error-based and

cost-based type adaptation mechanics.

• Demonstrated potential benefits of cost-based adaptation mechanics, especially mesh

optimization, to reduce unnecessary refinements for intermediate designs.

• Developed a mesh anisotropy detection model based on artificial neural networks

(ANNs), accelerating the mesh optimization procedure and reducing the implemen-

tation cost associated with adaptation.

• Explored the feasibility of a convolutional neural network (CNN)-based error esti-

mation and mesh adaptation approach, offering adaptive CFD for problems where

adjoint variables are not available or expensive to solve.

20

1.4.2 Thesis Outline

The thesis outline is summarized in Figure 1.8. The reminder of the thesis starts

with the introduction of the governing equations and the DG discretization in Chapter 2.

Chapter 3 provides a brief review of the adjoint-based methods in both error estimation

and sensitivity computation. In Chapter 4, we propose a coupled-adjoint approach to

estimate the objective error in an optimization problem, which also accounts for the con-

straint output errors. The proposed error estimator is then incorporated into traditional

gradient-based optimization in Chapter 5, in which both error-based and cost-based ap-

proaches are discussed. The developed framework is first demonstrated in single-point

airfoil optimization problems in Chapter 6, followed by extensions to multipoint opti-

mizations in Chapter 7. In order to accelerate the error estimation and mesh adaptation

process, machine learning techniques are utilized in Chapter 8 and Chapter 9. Finally, in

Chapter 10 we conclude the present work and discuss future research directions.

Automated, Reliable, Efficient
Aerodynamic OptimizationAdaptive CFD

Error Estimation

Mesh Adaptation Applications

Gradient-Based
Optimization

Chapter 7:
Multi-Point Optimization

Chapter 6:
Single-Point Optimization

Chapter 3: Adjoint

Machine Learning

Chapter 9:
Error Indicator Model

Chapter 8:
Mesh Anisotropy Model

Chapter 2:
Discontinuous

Galerkin

Chapter 4, 5:
Incorporation

Figure 1.8: Thesis outline.

21

CHAPTER 2

Governing Equations and Discretization

Although the methods developed in this work are intended for fluid flow governing

equations, specifically the compressible Navier-Stokes (NS) equations and their time av-

eraged form, Reynolds-averaged Navier-Stokes (RANS) equations, they are formulated

for a set of general conversation laws and can be applied to any system that admits a

conservation form. In this chapter, we begin with a brief review of conservation laws,

followed by the specific equations used for simulating the aerodynamic flows through-

out this work. Then, we elaborate the high-order finite-element discretization method

adopted for solving the equations of interest. The computational framework used in this

work is based on previous and ongoing developments conducted in the comptational fluid

dynamics group (CFDG) 1 at the University of Michigan, with a focus on output-based

high-order adaptive CFD methods.

2.1 Equations and Notation

A general unsteady (time-dependent) conservation law can be written as a set of PDEs,

∂u

∂t
+∇ · #„

H(u,∇u) + S(u,∇u) = 0, (2.1)

where u(~x, t) ∈ Rs is the state vector of rank s, which depends on the d-dimensional spatial

coordinates ~x ∈ Rd and the time t ∈ R;
#„

H ∈ Rd×s is the total flux and S ∈ Rs is the

source term when external forces or modeling terms are present, both possibly depending

on the state u and the state gradients ∇u. For systems involving both convection and

diffusion, the total flux
#„

H can be decomposed as

#„

H(u,∇u) =
#„

F(u)− #„

G(u,∇u), (2.2)

1https://sites.google.com/a/umich.edu/cfdg

22

https://sites.google.com/a/umich.edu/cfdg

where
#„

F ∈ Rd×s is the inviscid or convective flux, and
#„

G ∈ Rd×s is the viscous or diffusive

flux. The viscous flux is often linearly dependent on the states gradient, such that the ith

component of
#„

G can be written as

Gi(u,∇u) = −Kij∂ju, i, j = 1, 2, ..., d, (2.3)

where Kij ∈ Rs×s denotes the (i, j) component of the viscous diffusivity tensor. Eqn. 2.1-

2.3 describe a general conservation law, where the quantity of the property remains un-

changed unless external forces are exerted. In this work, we focus on physical conservation

in fluid flow, specifically the compressible Navier-Stokes equations.

2.2 Compressible Navier-Stokes Equations

The NS equations describe the motion of a viscous fluid, in which the fluid properties

are conserved during the transport of ordered motion of the flow i.e., convection, and

the random motion of the fluid particles, i.e., diffusion. The NS equations arise from

momentum conservation via Newton’s second law of motion, considering both the con-

vection and diffusion effects. Together with the conservation of mass and energy, the NS

equations take the form of conservation laws and consist of d + 2 conserved states in d

spatial dimensions. The original NS equations do not contain the source terms unless

external sources are present, so that the equations can be written as

∂tρ+ ∂j(ρvj) = 0, mass conservation

∂t(ρvi) + ∂j(ρvivj + pδij)− ∂jτij = 0, momentum conservation

∂t(ρE) + ∂j(ρHvj)− ∂j(τijvi − qj) = 0, energy conservation

(2.4)

where the variables are defined as

ρ: density

vi: ith component of velocity ~v

p: pressure

E: specific (per unit mass) total energy

H: specific (per unit mass) total enthalpy

qi: ith component of heat flux ~q

τij: viscous stress tensor

23

The heat flux ~q is the conductive or diffusive heat flux, which obeys Fourier’s law,

~qi = −kT∂iT, (2.5)

where T is the temperature and kT is the thermal conductivity. The specific total energy

E and the specific total enthalpy H are defined as the fluid kinetic energy due to motion

plus the fluid internal energy e or internal enthalpy h, respectively,

E = e+
1

2
|~v|2, (2.6)

H = h+
1

2
|~v|2. (2.7)

The internal energy e and enthalpy h, depend on the fluid material properties and the

temperature T ,

e = cvT, (2.8)

h = e+
p

ρ
= cpT, (2.9)

γ =
cp
cv
, (2.10)

where cv and cp are the specific heat capacity at constant volume and constant pressure

respectively, and they can be related via a constant specific heat ratio γ.

The viscous stress tensor τij was first derived by Stokes with analogy to Hookean

elasticity,

τij = 2µεij + λδij∂lvl, (2.11)

where λ is the bulk viscosity coefficient and µ is the second viscosity coefficient, or more

often referred to as dynamic viscosity. The strain rates tensor, εij, describes the deforma-

tions for the fluid, taking the form

εij =
1

2
(∂ivj + ∂jvi). (2.12)

To remove the ambiguous difference between the mean mechanic pressure of the fluid and

its thermodynamic counterpart p, Stokes’ hypothesis is adopted,

p̄− p = −(λ+
2

3
µ)∂lvl = 0,

⇒ λ+
2

3
µ = 0. Stokes’ hypothesis

(2.13)

24

With the thermodynamic and mechanic definitions above, the NS equations feature d+ 3

unknowns (states ρ, ρvi, ρE and the pressure p) with only d + 2 equations, the perfect

gas law is used to close the system, i.e., relating the pressure to the states,

p = ρRT, perfect gas law (2.14)

⇒ p = (γ − 1)(ρE − 1

2
ρ|~v|2), (2.15)

where R is the gas constant. Eqn. 2.15 is derived from Eqn. 2.8–2.10, with the perfect

gas law in Eqn. 2.14.

Following the notation presented in Section 2.1, we can write the NS equations in a

vector form as Eqn. 2.1,

u =



ρ

ρvi

ρE


 , #„

F =




ρvj

ρvivj + pδij

ρHvj


 , #„

G =




0

τij

τijvi − qj


 .

In this work, air properties with temperature-dependent dynamic viscosity (Sutherland’s

law) are defined as follows:

dynamic viscosity: µ = µref

(
T

Tref

)1.5(
Tref + Ts
T + Ts

)

Tref = 188.15K, Ts = 110K

µref = 1.789× 10−5N · s/m2

Prandtl number: Pr =
µcp
kT

= 0.71

thermal conductivity: kT =
µcp
Pr

specific heat: cv =
R

γ − 1
, cp = γcv =

γR

γ − 1

gas constant: R = 8.314 J/(mol ·K)

specific heat ratio: γ = 1.4

Once the gas constant R is given, the fluid properties are fully defined given the formulas

above. However, often in aerodynamic analysis, we are interested in non-dimensionalized

quantities, i.e., drag and lift coefficients, such that CFD codes do not necessary adopt

the physical units. To establish a unit-independent system, two more non-dimensional

25

quantities are defined, namely the Reynolds number (Re) and the Mach number (M),

Re =
ρ|~v|L
µ

, (2.16)

M =
|~v|
a
, a =

√
γRT (2.17)

where L is the reference length scale, e.g., chord length of an airfoil, and a is the speed of

sound which depends on the local temperature. For easier post-processing purposes, only

the non-dimensional quantities like Pr, Re, and M are defined rather than the physical

fluid properties. As long as R is defined, the unit system can be easily converted to the

physical unit system.

2.3 Reynolds-Averaged Navier-Stokes Equations

The NS equations are easy to solve when the flow is laminar, such that the flow field

is characterized by the object shape and dimension. As the Reynolds number increases,

i.e., the viscous effects become smaller compared to inertial forces, small perturbations

cannot be damped out effectively and may get amplified, leading to unstable flow and

eventually transition to turbulent flow. When turbulence commences, large variations in

the velocity field create eddies that transport with the bulk flow motion and break down

into smaller eddies until the length scale is small enough for viscous effects to dissipate the

kinetic energy associated with them. This is often termed as the energy cascade process.

The fluctuations in the velocity and pressure field caused by these eddies are inherently

unsteady, and any initial condition perturbations can lead to chaotic results. Thus to

solve the NS equations in high Reynolds number regimes, often of interest in aeronautical

applications, the simulation has to resolve the eddies with different scales and trace their

evolution, which often requires computational meshes that are intractable [69]. Therefore,

for practical engineering simulations in high Reynolds number flows, turbulence has to be

modeled.

In particular, Reynolds-averaged Navier-Stokes equations model turbulence by decom-

posing the primitive flow quantities into mean values and their time fluctuating parts, e.g.,

the flow velocity ~v can be decomposed into the mean velocity ~v and the fluctuations ~v ′.

With a time averaging process on the NS equations, Eqn. 2.4 becomes a set of PDEs

governing the mean flow quantities, i.e., the RANS equations. However, the time averag-

ing decomposition does not provide closures for the high-order moments, i.e., high-order

means, for the fluctuating parts. The most important term that need to be closed is the

Reynolds’ stress term, ρv′iv
′
j, which results from flow momentum convection but behaves

26

like a stress term. In this work, the closure of the RANS equations is accomplished by the

Spalart-Allmaras (SA) turbulence model [117] with negative viscosity modification [118].

More details for deriving and implementing the RANS-SA model can be found in the

National Aeronautics and Space Administration (NASA) Turbulence Modeling Resource

website 2. Presently, we just give the essential equations of the RANS-SA model. The

governing equations in Eqn. 2.4 are now with respect to the mean states and can be

written as 3,

∂tρ+ ∂j(ρvj) = 0,

∂t(ρvi) + ∂j(ρvivj + pδij)− ∂jτRANS
ij = 0,

∂t(ρE) + ∂j(ρHvj)− ∂j(τRANS
ij vi − qRANS

j) = 0.

(2.18)

τRANS is the effective viscous stress tensor that accounts for both the physical viscous

stress and the Reynolds’ stress, while qRANS
j is the effective heat flux considering the

turbulent transport effects. These are related to mean flow quantities by

τRANS
ij = 2(µ+ µt)

(
εij −

1

3
∂lvlδij

)
, (2.19)

qRANS
j = −(kRANS

T)∂jT = −cp
(
µ

Pr
+

µt
Prt

)
∂jT, (2.20)

where µt is the eddy viscosity by analogy to the molecular diffusion, and Prt is the

turbulent Prandtl number. The SA model introduces a turbulent kinematic viscosity, ν̃,

to model the eddy viscosity,

µt =




ρν̃fν1(χ), ν̃ ≥ 0

0, ν̃ < 0
, fv1(χ) =

χ3

χ3 + c3
v1

, χ =
ν̃

ν
, (2.21)

where ν = µ/ρ is the physical kinematic viscosity, and χ is the non-dimensionalized

turbulent kinematic viscosity. To close the RANS-SA system, one transport equation for

ν̃ is given

∂t(ρν̃) + ∂j(ρν̃vj) =
ρ

σ
∂j(η∂j ν̃) +

cb2ρ

σ
∂j ν̃∂j ν̃ + P −D, (2.22)

or in a conserved form for ρν̃, using Eqn. 2.18,

∂t(ρν̃) + ∂j(ρν̃vj)− ∂j
(ρη
σ
∂j ν̃
)

= −ρη
σ
∂jρ∂j ν̃ +

cb2ρ

σ
∂j ν̃∂j ν̃ + P −D, (2.23)

2https://turbmodels.larc.nasa.gov
3The conserved states are all mean states in RANS equations; the mean value notation ·̄ is omitted

here for simplicity.

27

https://turbmodels.larc.nasa.gov

where P and D are, respectively, the production and destruction terms for ν̃, cb2 and σ

are model constants. ρη/σ resembles the diffusion coefficient for the turbulent kinematic

viscosity, in which η is defined as

η = ν + ν ′, ν ′ =




νχ, χ ≥ 0

νfn(χ), χ < 0
, fn(χ) =

cn1 + χ3

cn1 − χ3
. (2.24)

The production term P and the destruction term D dictate, respectively, the increase and

the decrease of the turbulent kinematic viscosity. The production term, P , is defined as

P =




cb1S̃ρν̃, χ ≥ 0

cb1Sρν̃, χ < 0
, S̃ =




S + S̄, S̄ ≥ −cv2S

S +
S(c2v2S+cv3S̄)

S(cv3−2cv2)−S̄ , S̄ < −cv2S
. (2.25)

where S =
√

2ΩijΩij is the magnitude of the vorticity tensor, Ωij = (∂ivj + ∂jvi)/2, and

S̃ is the modified vorticity magnitude with the near-wall correction S̄ given by

S̄ =
ν̃fv2

k2d2
, fv2 = 1− χ

1 + χfv1

, (2.26)

where d is the distance to the nearest wall. The destruction term D is modeled as

D =




cw1fw

ρν̃2

d2 , χ ≥ 0

−cw1
ρν̃2

d2 , χ < 0,
(2.27)

where the coefficients are

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), r =
ν̃

S̃k2d2
. (2.28)

The SA model constants (parameters) are summarized as follows,

cb1 = 0.1355 cw2 = 0.3

σ = 2/3 cw3 = 2

cb2 = 0.622 cv1 = 7.1

κ = 0.41 cv2 = 0.7

cw1 =
cb1
κ2

+
1 + cb2
σ

cv3 = 0.9

Prt = 0.9 cn1 = 16

28

Scaling of ν̃

The turbulent kinematic viscosity, ν̃, will in general be orders of magnitude smaller

than other state components, causing convergence issues for nonlinear solvers. In practice,

ν̃ is scaled to match the order of the other states [119],

ν̃s =
ν̃

cs
, (2.29)

where cs is the scaling factor, usually on the order of
√
Re. Eqn. 2.23 is also scaled by cs,

∂t(ρν̃s) + ∂j(ρν̃svj)− ∂j
(ρη
σ
∂j ν̃s

)
= −ρη

σ
∂jρ∂j ν̃s + cs

cb2ρ

σ
∂j ν̃s∂j ν̃s +

P −D
cs

, (2.30)

the scaling of the SA working variable ν̃ helps converge the residual of the closure equation

to the similar level of other components.

2.4 Discontinuous Galerkin Discretization

In order to solve the compressible NS and the RANS equations above, we need to

discretize them in both space and time. In this work, we only consider steady state

solutions, i.e., ∂/∂t = 0, although for clarity in exposition, we leave the unsteady term

in the analysis. Finite element methods are used to discretize the system of equations

in space. More specifically, a discontinuous Galerkin discretization is adopted to support

high-order accuracy and mesh refinement. However, the framework developed in this

thesis can be applied to other discretizations supporting output-based error estimation

and mesh adaptation.

2.4.1 Solution Approximation

Consider a set of PDEs for states u on a computational domain Ω, subject to well-

posed boundary conditions. We first partition the domain into a tessellation Th, i.e., the

computational mesh, which consists of Ne non-overlapping elements, Ωe,

Th =

{
Ωe :

Ne⋃

i=1

= Ω,
Ne⋂

i=1

Ωe = ∅
}
. (2.31)

An example unstructured computational mesh for flow over a smooth bump is shown in

Figure 2.1. This mesh contains both linear and high-order curved elements to represent

curved boundaries. High-order elements for curved boundary representations are often

29

necessary to fulfill the accuracy benefits of high-order discretizations [68] and to avoid spu-

rious oscillations, especially in methods like DG where neighboring geometry information

does not come into the local weak form directly [120].

computational domain

linear element curved element

reference space

physical space

Figure 2.1: An example unstructured mesh Th for flow over a smooth bump in the com-
putational domain Ω.

In the DG method, we seek a numerical representation of the solution, uh, in which

each state component inside element Ωe is approximated by a set of polynomials of order

pe, denoted by Ppe(Ωe)
4. Formally, the solution uh lies in the approximation space Vh,

uh ∈ Vh = [Vh]s, where

Vh = {v ∈ L2(Ω) : v|Ωe ∈ Ppe ∀Ωe ∈ Ω}. (2.32)

A key feature of DG is that solution continuity is not enforced across adjacent elements,

i.e., Vh is only continuous inside an element. A comparison of DG approximation and its

continuous counterpart, continuous Galerkin (CG) approximation, for a state component

u, is shown in Figure 2.2 to highlight the discontinuous nature of DG methods. The

elemental approximation order pe is not necessarily uniform in the mesh, allowing for

p-adaptation, while in this work we restrict to fixed order p approximation throughout

the entire mesh. Thus for the rest of the paper, we denote the solution as uph where the

subscript h specifically refers to the computational mesh and p is the approximation order

which will be omitted for simpler illustration if necessary.

4The polynomials are defined in reference space and for curved elements they may not remain order
pe polynomials after the mapping to physical space, as shown in Figure 2.1, although additional mapping
can be performed to recover the polynomial orders [121].

5The order p in the figures represent the minimum degree of polynomials required to represent the
local solutions, although higher order polynomials can always recover the lower order profiles, e.g., any
linear solution profile can be represented by polynomials of order 1 or higher.

30

(a) Continuous Galerkin (b) Discontinuous Galerkin

Figure 2.2: Solution approximation using the CG and DG methods 5. Though no con-
tinuity constraints are enforced at adjacent element boundaries, the inter-element flux is
uniquely defined, as in finite volume methods.

2.4.2 Weak Form

With a properly defined approximation space, a DG method then seeks a solution,

uh, that satisfies the weak form of the governing equations. The weak form enforces the

orthogonality of the strong form PDEs with respect to test functions, wh, lying in the test

space that is the same as the approximation space in the context of Galerkin methods,

i.e., wh ∈ Vh. The weak form of Eqn. 2.1 follows from taking the inner products with test

functions, integrating by parts and coupling elements via uniquely defined inter-element

numerical fluxes. The resulting weak form can be written as

Ne∑

e=1

∫

Ωe

wT
h

∂uh
∂t

dΩ +Rh(uh,wh) = 0 ∀wh ∈ Vh, (2.33)

where Rh(uh,wh) is the semilinear form of the spatial residual term,

Rh(uh,wh) =
Ne∑

e=1

[Rh,I(uh,wh|Ωe) +Rh,V (uh,wh|Ωe) +Rh,S(uh,wh|Ωe)] (2.34)

where the subscripts I, V and S denote the contributions from the inviscid flux, viscous

flux and the source terms, respectively.

31

2.4.2.1 Inviscid Discretization

Applying integration by parts for the inviscid flux term, we can obtain the inviscid

residual as

Rh,I(uh,wh|Ωe) = −
∫

Ωe

∇wT
h ·

#„

FdΩ +

∫

∂Ωe

wT
h F̂(u+

h ,u
−
h) · ~ndS ∀wh ∈ Vh. (2.35)

On the elemental boundary ∂Ωe, a face in three dimensions or an edge in two dimensions,

{·}+ and {·}− terms denote, respectively, the quantities from inside the element or its

neighbor element sharing ∂Ωe. {·} · ~n represents the uniquely defined normal numerical

flux on the element interface, where ~n is the outward-pointing normal vector on ∂Ωe.

More specifically in Eqn. 2.35, F̂ · ~n is the numerical inviscid flux depending on both the

states from the element interior u+ and the states from its neighbor u−. The computation

of numerical fluxes requires solving exactly or approximately the local Riemann problem

on the element interface, which luckily has been well studied for finite volume methods

during the 1980s [29]. We use the Roe approximate Riemann solver [122] with an entropy

fix, which takes the form

F̂(u+
h ,u

−
h) · ~n =

1

2
[F(u+

h) + F(u−h)]− 1

2
R|Λ|L(u+

h − u−h), (2.36)

where L and R are the left and right eigenvector matrices corresponding to the eigenvalue

matrix Λ of the flux Jacobian matrix ∂F/∂u, which is linearized at the Roe-averaged state

ũ(u+
h ,u

−
h).

2.4.2.2 Viscous Discretization

The treatment of the viscous flux is not straightforward for DG methods, as the

diffusion terms favors a solution that is everywhere differentiable which does not naturally

hold for DG solutions. In order to obtain a stable discretization for viscous terms, we use

a “mixed” formulation which turns the viscous terms into first-order equations,

#„qh =
#„

Gh(uh,∇uh) = −K(uh)∇uh, (2.37)

rh,V (uh) = −∇ · #„

Gh(uh,
#„qh) = −∇ · #„qh (2.38)

where #„qh ∈ Qh is an approximation of the d -dimensional continuous viscous flux inside

the element and rh,V is the strong form of the viscous residual. Testing Eqn. 2.37 with

32

test functions #„τ h ∈Qh gives

∫

Ωe

#„τ Th · #„qhdΩ = +

∫

Ωe

uTh∇ · (KT #„τ h)dΩ−
∫

∂Ωe

u+
h
T
KT #„τ h · ~ndS ∀ #„τ h ∈Qh. (2.39)

Note that the viscous flux #„qh is discontinuous across the element interfaces. If directly

used in Eqn. 2.38 to evaluate divergence, this discontinuity will cause stability issues for

the viscous discretization. Instead, we use a “weakly continuized” flux introduced by the

first approach of Bassi and Rebay [82], #„σh = #„qh +
#„

δ h, defined as

∫

Ωe

#„τ Th · #„σhdΩ = +

∫

Ωe

uTh∇ · (KT #„τ h)dΩ−
∫

∂Ωe

(ûh)
TKT #„τ h · ~ndS ∀ #„τ h ∈Qh, (2.40)

where ûh is the numerical flux function for uh which brings in weak continuation for #„σh.

A natural choice of ûh for diffusion problem is the averaged state defined at the element

interface,

ûh = {uh} =
u+
h + u−h

2
. (2.41)

Subtracting Eqn. 2.39 from Eqn. 2.40 defines the auxiliary variable
#„

δ h as

∫

Ωe

#„τ Th ·
#„

δ h = −
∫

∂Ωe

(ûh − u+
h)TKT #„τ h · ~ndS

= −1

2

∫

∂Ωe

(u−h − u+
h)TKT #„τ h · ~ndS

= −1

2

∫

∂Ωe

JuhKTKT #„τ h · ~ndS ∀ #„τ h ∈Qh,

(2.42)

where J·K denotes the jumps at the element interfaces. Eqn. 2.42 can also be considered as

a lifting operation which converts the states jumps (discontinuity) on the element interface

into the surrounding elemental fluxes.

Now instead of taking the divergence of the original flux in Eqn. 2.38, we use the

“continuized” flux in Eqn. 2.40. The resulting weak form can be written as

Rh,V (uh,wh|Ωe) = +

∫

Ωe

#„σT
h · ∇whdΩe −

∫

∂Ωe

wT
h

#̂„σh · ~ndS ∀σh ∈ Vh, (2.43)

where #̂„σh is the numerical flux function of #„σh, which again takes the average on the

element interfaces,
#̂„σ = { #„qh}+ { #„

δ h}. (2.44)

However, this choice of numerical flux for #„σh together with the jump lifting operation

33

defined in Eqn. 2.42 results in a non-compact scheme. Moreover, this approach exhibits

suboptimal convergence rate for odd approximation orders [83]. Hence, the second form

of Bassi and Rebay (BR2) [83] is used in this work. In BR2 treatment,
#„

δ h is defined

independently for each face f ∈ ∂Ωe,

∫

Ωe

#„

δ h,f = −1

2

∫

f

JuhKTKT #„τ h · ~ndS,
#„

δ h|Ωe =
∑

f∈∂Ωe

#„

δ h,f , (2.45)

and accordingly the numerical flux for #̂„σh is modified as

#̂„σh,f = { #„qh}+ { #„

δ h,f}. (2.46)

If we choose the test function in Eqn. 2.40 such that #„τ h = ∇wh, we can substitute

Eqn. 2.40 into Eqn. 2.43 to eliminate the first volume integral,

Rh,V (uh,wh|Ωe)dΩ = +

∫

Ωe

uTh∇ · (KT∇wh)dΩ−
∫

∂Ωe

ûThKT∇wh · ~ndS

−
∫

∂Ωe

wT
h

#̂„σh · ~ndS. ∀wh ∈ Vh.

(2.47)

Integrating by parts for the first volume integral and plugging in the numerical fluxes

defined in Eqn. 2.41 and Eqn. 2.46, we obtain the weak form of the viscous terms as

Rh,V (uh,wh|Ωe)dΩ =−
∫

Ωe

∇wT
hK∇uhdΩ +

∫

∂Ωe

(uh − ûh)
TKT∇wh · ~ndS

−
∫

∂Ωe

wT
h {K∇u} · ~ndS −

∑

f∈∂Ωe

∫

f

wT
h {

#„

δ h,f} · ~ndS ∀wh ∈ Vh.

(2.48)

This discretization is compact since the numerical flux #„σh only depends on the two el-

ements directly sharing the common faces. Moreover, if the auxiliary variable
#„

δ h,f is

solved as
#„

δ h,f ·~n inside each element with local solution bases, Eqn. 2.48 provides a sym-

metric semilinear form and ensures adjoint consistency or so called dual consistency. See

Chapter 3 for more details.

Often to ensure stability, the flux function #„σ is modified as #̂„σh = { #„qh}+ηf{
#„

δ h,f}. The

method is provably stable when the non-dimensional stabilization factor ηf is chosen to

be greater than or equal to the maximum number of faces on the adjacent elements [123].

We set it to be twice of the maximum number of faces in the current work. For solutions

that exhibit discontinuities, e.g., shocks in transonic regimes, additional stabilization are

34

added if necessary by increasing ηf .

2.4.2.3 Source Term Discretization

The source term is discretized by multiplying with test functions and integrating over

the computational domain,

Rh,S(uh,wh|Ωe) =

∫

Ωe

wT
hS(uh,∇uh). (2.49)

The source discretization shown in Eqn. 2.49 is not dual-consistent, but additional terms

can be added to the weak form to ensure dual consistency. Alternatively, asymptotic

consistency can be achieved by replacing ∇u with the “continuized” gradients #„σh in the

source term [124, 125]. In our DG implementation, the output functional is modified to

include the numerical flux #̂„σ to achieve an asymptotically dual-consistent discretization.

2.4.3 Discrete Form and Solution Technique

By choosing a complete set of order p basis functions, φi, such that Vph|Ωe = span{φi},
we can represent the solution as

uh =
Ne∑

e=1

Np∑

j=1

Ue,jφe,j(~x), (2.50)

where Ue,j is the solution coefficients associated with the jth out of Np basis functions in

element e. The basis functions are defined in the reference space as order p polynomials,

φ(~ξ) which takes the same form for each element while the geometry mapping inside

different elements alter the approximation space, φ(~x(~ξ)). In this work, we consider two

sets of basis functions spanning the space covered by monomials on the reference space,∏d
i=1 ξ

pi
i : a full-order space in which

∑d
i=1 pi ≤ p, and a tensor-product space in which

∀i ≤ d, pi ≤ p. The resulting dimensions of these spaces are

full-order basis: Np =

(
p+ d

d

)
=

(p+ d)!

p!d!
, tensor-product basis: Np = (p+ 1)d.

In each element, every state component is approximated using the same set of basis

functions. In other words, the number of unknowns associated with each state component

in one element is Np, which is also called degrees of freedom (DOF) per element per state.

The sum of degrees of freedom over elements is often used as a measure of the system

cost. Ue,j ∈ Rs includes the unknowns of all the state components associated with jth

35

basis, and elemental solution vector Ue = [Ue,j] ∈ RNp×s is an unrolled vector consists

of the total DOF of element e. Therefore the weak form in Eqn. 2.34 can be written as a

system of ordinary differential equations (ODEs),

M
dUh

dt
+ Rh(Uh) = 0. (2.51)

where Uh = [Ue] ∈ RN is the unrolled vector consists of system total DOF, N = Ne×Np×s.
M ∈ RN×N is a block-diagonal mass matrix,

M = diag(Me), Me,ij =

∫

Ωe

φiφjdΩ. (2.52)

Similarly, the global residual vector Rh ∈ RN is an unrolled vector of element-wise resid-

uals Re ∈ RNp×s, which are defined as

Re = [Re,i], i = 1, 2, ..., Np;

Re,i = [Re,i,r], r = 1, 2, ..., s;

Re,i,r = Rh(uh, φier|Ωe),
(2.53)

where er ∈ Rs is a vector of all zeros except a 1 in position r.

For steady problems considered in this work, dUh/dt = 0, while it is kept when pseudo-

transient continuation is used to evolve the solution to a steady state. Particularly, an

implicit backward Euler time integration scheme is used to evolve the system in time,

such that at time step n the solution update follows

R(Un+1) =
M

∆t
(Un+1

h −Un
h) + Rh(U

n+1
h) = 0, (2.54)

where the time step ∆t is chosen based on Courant-Friedrichs-Lewy (CFL) number,

∆te = CFL
he
ce
, ∆t = min

Ωe∈Th
∆te, (2.55)

where he is a measure of the element grid spacing and ce is the maximum convective wave

speed over the element. The system in Eqn. 2.54 is linearized as

(
M

∆t
+
∂Rh

∂U

∣∣∣∣
Uk

)
∆Uk + R(Uk) = 0. (2.56)

The linear system above is solved using a element-line preconditioned generalized minimal

residual method (GMRES) Krylov subspace method [126, 121], in which k denotes the

36

kth iteration in the nonlinear solve. The solution update obtained in Eqn. 2.56 is then

limited based on physical realizability constraints of the equation set [127]. The CFL

number is increased exponentially if a successful update is taken, otherwise the solution

is rolled back and the CFL is decreased.

Shock Capturing High-order finite-element solutions are susceptible to oscillations

when the underlying solution has discontinuities, e.g., shocks in transonic regimes. The

solver uses artificial viscosity to stabilize the solution. Currently, an element-based arti-

ficial viscosity is used, and more details can be found in [128].

37

CHAPTER 3

Adjoint-Based Sensitivity Analysis and Output Error

Estimation

Since the early works of the adjoint method in aerodynamic optimization, it has been

the predominant approach of computing output gradients due to its excellent scalability

in large-scale problems. In addition, adjoint-based error estimation has also shown much

success in quantifying solution errors and providing effective indicators for mesh adapta-

tion purposes. In the current work, adjoints will be used in aerodynamic optimization

problems for both evaluating the output gradients and quantifying the output accuracy.

This chapter gives a formal introduction to adjoint methods, providing a brief review of

the use of adjoint methods in optimization and error estimation, both in the context of

finite element methods.

3.1 Adjoint and Duality

Although the entire solution field offers insight into the underlying physics of the PDE

system we are solving, in most engineering applications such as design optimization, the

quantities of most interest are often some scalar outputs, e.g., drag or lift. For simplicity,

we will start with a scalar PDE first and then generalize to systems of equations. Let J
be an output quantity derived from the solution u by applying a functional J (·),

J (u) =

∫

Ω

gudΩ = 〈u, g〉, (3.1)

where 〈·, ·〉 is the inner product defined in L2(Ω). Consider a linear differential PDE,

r(u) = Lu− f, u ∈ V , (3.2)

38

where L is a linear differential operator, for instance the convection operator with velocity

~a as ~a · ∇, or the diffusion operator with diffusivity coefficient κ as −κ∇2; f accounts

for the source term if present in the system. Using an optimal control approach, we

can consider a constrained optimization problem, which is equivalent to evaluating the

output J from the solution of r(u) = 0 . The trivial optimization, often called the primal

problem can be stated as

J ∗p = min
u∈V
J (u)

s.t. r(u) = 0,
(3.3)

where J ∗p denotes the optimum of the primal problem. The above problem can then be

written as searching for the stationary point of the Lagrangian function L as

L(u, ψ) = J (u) +R(u, ψ) = 〈u, g〉+ 〈r(u), ψ〉
= 〈u, g〉+ 〈Lu− f, ψ〉,
= −〈ψ, f〉+ 〈L∗ψ + g, u〉,

(3.4)

where ψ ∈ V is the Lagrange multiplier, whose inner product with r(u) gives the weak

form R of the original PDE. L∗ is the adjoint operator of L, which can be obtained by

applying integration by parts on the weak form R. The Lagrangian function introduces

a corresponding dual problem,

J∗d = max
ψ∈V
−〈ψ, f〉

s.t. d(ψ) = L∗ψ + g = 0.
(3.5)

where J ∗d represents the optimum of the dual problem, d(ψ) is the dual equation or often

referred to as the adjoint equation, subject to corresponding boundary conditions. By

definition, the optima of the primal and dual problems satisfy

J∗p (u∗) = inf
u∈V

sup
ψ∈V
L(u, ψ) ≥ J∗d (ψ∗) = sup

ψ∈V
inf
u∈V
L(u, ψ). (3.6)

The inequality is called weak duality, which always hold regardless of the form of the

functionality and dual/primal equations. The equality, also termed as strong duality, holds

when the optima J∗p and J∗d are finite and the corresponding primal solution u∗ and adjoint

solution ψ∗ are feasible, i.e., they are solutions of the primal equation in Eqn. 3.3 and the

adjoint equation in Eqn. 3.5, respectively. An immediate necessary condition for strong

duality is the Karush-Kuhn-Tucker (KKT) condition, which enforces the stationarity of

39

the Lagrangian function with respect to the primal and adjoint variables,

Lψδψ = R′[ψ]δψ = R(u, δψ) = 0 ∀δψ ∈ V (3.7)

⇒ Lψ = r(u) = Lu− f = 0 primal equation; (3.8)

Luδu = J ′[u]δu+R′[u]δu = 0 ∀δu ∈ V (3.9)

⇒ Lu = d(ψ) = L∗ψ + g = 0 adjoint (dual) equation. (3.10)

Eqn. 3.7 and Eqn. 3.9 recover the weak forms of the primal and adjoint equations, re-

spectively, while Eqn. 3.8 and Eqn. 3.10 present their strong forms. Strong duality relies

on the convexity of the output functional and the existence of the primal and adjoint

solutions, which can be ensured by the output definition and the well-posedness of the

primal and adjoint problems.

For nonlinear systems we have r(u) = N(u) − f , where N is the nonlinear operator

applied to u. Suppose ũ is the primal solution, i.e., r(ũ) = 0, we can then linearize the

system at ũ as

r(ũ+ δu) = r(ũ) +N ′[u]δu ⇒ Lũ = N ′[u], (3.11)

where Lũ is the linear operator associated with the linearized system. The corresponding

linearized output functional can be defined as

J (ũ+ δu) = J (ũ) + J ′[u]δu⇒ gũ = J ′[u], (3.12)

where gũ is the linearized output weight function. Then the adjoint equation can be

written as

L∗ũψ + gũ = 0. (3.13)

Or alternatively, we can directly invoke the KKT condition for the nonlinear system to

obtain both the primal and the adjoint equations,

Lψδψ = R′[ψ](u, δψ) = R(u, δψ) = 0 ∀δψ ∈ V weak form primal equation (3.14)

Luδu = J ′[u]δu+R′[u](δu, ψ) = 0 ∀δu ∈ V weak form adjoint equation (3.15)

A similar idea can be easily extended to systems of equations, where the strong form

40

residual r(u) and weak form residual R are defined as

r(u) = N (u)− f = 0,

R(u,w) =

∫

Ω

wT r(u)dΩ =

∫

Ω

wkrk(u)dΩ =
s∑

k=1

〈wk, rk(u)〉 = 0 ∀w ∈ V = [V]s.

(3.16)

Again, by applying the stationarity condition and replacing the δ terms with a general

perturbation w in V , we recover the primal equation and obtain the adjoint equation,

Lψw = R(u,w) = 0 ∀w ∈ V , (3.17)

Luw = J ′[u](w) +R′[u](w,ψ) = 0 ∀w ∈ V . (3.18)

3.2 Discrete Adjoint

Suppose the approximation space for both the primal and dual solutions is finite

dimensional, defined by a computational mesh Ω and an approximation order p, Vp
h =

[Vph]s, or simply denoted as Vh. The primal and adjoint equations can be written as

Rh(uh,wh) = 0 ∀wh ∈ Vh, (3.19)

J ′h[uh](wh) +R′h[uh](wh,ψh) = 0 ∀wh ∈ Vh. (3.20)

Eqn. 3.20 assumes the primal uh and the adjoint ψh lie in the same space Vh. However,

with Eqn. 3.18 a strong form of the adjoint equation can also be derived, which suggests

that the adjoint problem can be solved in a different space, i.e., discretized in different

mesh or approximation order. This approach is called the continuous adjoint approach,

in which the word “continuous” means obtaining the continuous adjoint equations before

discretizing. Despite the flexibility of the continuous approach, its derivation requires

manipulation on the primal governing equation and careful treatment of the boundary

conditions of the adjoint equations.

On the other hand, the discrete adjoint can also be derived in a fully-discrete fashion,

termed as discrete adjoint approach. Consider the fully-discrete form of the steady-state

primal problem in Eqn. 2.51,

Rh(Uh) = 0. (3.21)

The discretized output of interest can be written as Jh(Uh), where Jh is the discretized

form of J . Similarly, the evaluation of the output Jh(Uh) can be formulated as a mini-

41

mization problem with respect to the state solution vector Uh, and the duality still holds

under discretization [96]. Invoking KKT condition again recovers the discrete primal

equation and defines the discrete adjoint equation.

Here, we derive the fully-discrete adjoint equation in another way, which involves more

physical intuitions. In the continuous weak form of adjoint equation in Eqn. 3.18, the

adjoint variable can be interpreted as the output sensitivity to an infinitesimal residual

perturbation. Similarly, in a discrete form, we can define the adjoint vector Ψh to relate

the output perturbation and the residual perturbation, δRh ∈ RNh ,

δJh = Jh(Uh + δUh)− Jh(Uh) = ΨT
h δRh. (3.22)

The residual perturbation can come from the change of the boundary conditions in op-

timization problems or from different levels of discretizations in error estimation. To

evaluate the output on the perturbed system, the state (perturbation) needs to be com-

puted, which satisfies

∂Rh

∂Uh

δUh + δRh = 0 ⇒ δUh = −
[
∂Rh

∂Uh

]−1

δRh. (3.23)

The output perturbation can then be obtained using the linearization of the output start-

ing with the state perturbation from Eqn. 3.23,

δJh =
∂Jh
∂Uh

δUh = − ∂Jh
∂Uh

[
∂Rh

∂Uh

]−1

δRh. (3.24)

Comparing Eqn. 3.22 and Eqn. 3.24, we require the following identity for any permissible

residual perturbation,

ΨT
h = − ∂Jh

∂Uh

[
∂Rh

∂Uh

]−1

. (3.25)

Rearranging the above equation, we arrive at the discrete adjoint equation,

[
∂Rh

∂Uh

]T
Ψh +

[
∂Jh
∂Uh

]T
= 0. (3.26)

42

A closer look at the adjoint solution vector reveals

∂Jh
∂Uh

−
[
∂Rh

∂Uh

]−1

δRh

δJh =
[
gh,1 gh,2 . . . gh,Nh

] 

| | | |
αh,1 αh,2 . . . αh,Nh
| | | |







δRh,1

δRh,2

...

δRh,Nh




︸ ︷︷ ︸
output weights GT

h

︸ ︷︷ ︸
states perturbation δUh

= GT
hαh,1δRh,1 + GT

hαh,2δRh,2 + . . .GT
hαh,NhδRh,Nh

= Ψh,1δRh,1 + Ψh,2δRh,2 + . . .Ψh,NhδRh,Nh

= ΨT
h δRh,

(3.27)

where we can see that each column of the negative inverse Jacobian matrix, αh,i, gives

the sensitivity of the states to the residual perturbation, which weighted by the output

linearization vector Gh defines the adjoint vector that represents the output sensitivity

with respect to the residual perturbation.

For discretizations taking a variational form (i.e., a weak form), the continuous weak

form of the adjoint equation, Eqn. 3.20 reduces to the equivalent discrete form as Eqn. 3.26

after choosing a set of basis function. Likewise, using the discrete adjoint vector solution

and the corresponding basis set, a continuous adjoint field ψh can be constructed. For

discretizations like finite volume and finite difference, the continuous adjoint approach and

discrete adjoint approach may arrive at different fully-discrete algebraic systems. Often,

in practice, the discrete adjoint approach is preferred if an implicit solver is employed

in the primal flow problem, since the adjoint equation only requires a transpose of the

primal residual Jacobian and can be solved in a similar framework with minimal change

of the computational code. However, for explicit time integration methods, the Jacobian

matrix may not be computed or stored, and a continuous adjoint approach is generally

easier to implement [129, 130], despite the requisite derivation of the strong form adjoint

equations.

In this work, the discrete adjoint approach is used. Figure 3.1 shows an example of

compressible Navier-Stokes simulation for laminar flow over a symmetric National Advi-

sory Committee for Aeronautics (NACA) 0012 Airfoil. The flow is moving from left to

right horizontally, i.e., the airfoil angle of attack is 0◦, with a freestream Reynolds number

of 5000 and Mach number of 0.5. The output of interest Jh is the drag of the airfoil, based

on which the adjoint vector is solved using Eqn. 3.26. The left contour plot shows the

43

x -momentum component of the primal state, while the right one depicts the conservation

of x -momentum component for the drag adjoint. Both the continuous primal and adjoint

fields are constructed using the discrete primal and adjoint vectors respectively, with the

same basis set. The adjoint field represents the sensitivity of the drag with respect to the

residual, in Figure 3.1b particularly the x -momentum conservation residual.

(a) primal field x -momentum component (b) adjoint field x -momentum component

Figure 3.1: Sample primal and adjoint solutions of a laminar flow simulation over the
NACA 0012 airfoil. The color scales are clipped to show interesting features. In the
adjoint plot, red and blue regions identify the areas which the drag output is most sensitive
to.

As shown in Figure 3.1b, the drag output is sensitive to the residual perturbation

in the blue and red regions, namely the airfoil boundary and the stagnation streamline.

Meanwhile, the drag is less sensitive to downstream regions. The adjoint fields share

similarity compared to the primal fields, such as the presence of a boundary layer close

to the airfoil boundary. Moreover, the stagnation streamline is clearly depicted in the

adjoint field, which resembles the wake in the primal field, however presented in a reversed

direction. These interesting similarities, including the adjoint boundary layer and the

“reversed wake”, are inherent to the primal-adjoint symmetry rather than just coincidence.

Let’s consider a model linear convection-diffusion problem, which is a linear version of the

laminar flow problem,

Lu− f = ~v · ∇u+ ν∇2u− f = 0, (3.28)

where ~v is the convection velocity and ν denotes the viscosity. Multiplying by a test

function, integrating by parts, and assuming homogeneous boundary condition, we can

obtain the weak form and hence the strong form of the adjoint equation,

L∗ψ + g = −~v · ∇ψ + ν∇2ψ + g = 0. (3.29)

The similarity in the adjoint and primal equations shown in Eqn. 3.28 and Eqn. 3.29

44

explains the similarity in the contour plots presented in Figure 3.1. More specifically,

the negative sign of the convection velocity ~v is responsible for the reversed convection of

the adjoint field, while the same diffusion operator controls the similar boundary layers

in both the primal and adjoint solutions. In a fully-discrete fashion, we can define the

discrete form of Eqn. 3.28 as

Rh(Uh) = AhUh − Fh = (Ch + Dh)Uh − Fh = 0, (3.30)

where Ah ∈ RNh×Nh is the residual Jacobian matrix, while Ch ∈ RNh×Nh and Dh ∈
RNh×Nh are the Jacobian matrix contributions from the convection and diffusion respec-

tively; Fh ∈ RNh accounts for the source terms and the boundary conditions of the primal

equation. Often Ch is asymmetric accounting for the upwinding of the convection scheme,

while Dh is usually symmetric as the numerical viscous fluxes in general take an average

form. The corresponding fully-discrete adjoint equation can be written as,

AT
hΨh + Gh = (CT

h + DT
h)Uh + Gh = 0, (3.31)

in which we can immediately observe that the transpose of Ch resembles an upwind

discretization for the adjoint variable propagating reversely as the primal variable, while

the self symmetric (adjoint) diffusive Jacobian Dh possesses the same structure in the

adjoint equation, producing a similar boundary layer features in the adjoint solution.

More formally, we can say that the transpose of the Jacobian matrix, (∂Rh

∂Uh
)T is a discrete

operator (discretization) corresponding to the continuous adjoint operator L∗.

The adjoint field depicted in Figure 3.1b is a continuous representation, ψh, of the

discrete adjoint solution, Ψh, obtained using the discrete adjoint approach, i.e., solving

Eqn. 3.26. It will only approach the exact adjoint solution of the continuous adjoint

equation Eqn. 3.18, ψ, if the discrete adjoint equation is consistent with the exact adjoint

problem, or in other words, (∂Rh

∂Uh
)T is a consistent discretization of L∗. The consistency

of the adjoint will be discussed with more details in Section 3.5.

3.3 Adjoint-Based Sensitivity Analysis

The strong duality of linear systems also suggests another approach of calculating the

output, alleviating the repeated computation of the states for various boundary conditions.

Consider an optimization problem using a discrete system of equations, as the design

parameters vary the Fh vector also changes accordingly. In order to evaluate the objective

output Jh = GT
hUh on the updated design, the system needs to be solved repeatedly for

45

different Fh. A more efficient way of computing the outputs when exploring the design

space is through the dual form, Jh = −ΨT
hFh, in which the variation of the design Fh is

directly converted to the output changes.

For a general nonlinear system, the strong duality still holds as long as the output

functional is convex. Due to the nonlinearity of the operator, the output cannot be

directly evaluated using the adjoint variables. However, the adjoint variables are still

useful for estimating the output sensitivity or perturbations. Consider an optimization

problem using a nonlinear system of discrete equations. Suppose the design space is

parameterized with a set of design parameters, µ. The forward problem can be defined

as

µ︸︷︷︸
design parameters ∈ RNµ

→ Rh(Uh,µ)︸ ︷︷ ︸
Nh equations

→ Uh︸︷︷︸
states ∈ RNh

→ Jh(Uh)︸ ︷︷ ︸
output ∈ R

. (3.32)

In order to exploit gradient-based optimization algorithms, we need to first compute the

gradient (sensitivity) of the output with respect to the design variables,

dJh
dµ
∈ RNµ . (3.33)

A natural choice for computing the sensitivity is using the finite difference, which perturbs

the parameters one at a time and solves the nonlinear system repeatedly to obtain the

output perturbations, i.e., invoke primal form of the output repeatedly. This process can

be viewed as a feedback control system as shown in Figure 3.2, the red part. Given a

parameter perturbation, the corresponding residual perturbation δRh,µ feeds a positive

signal to the control system. In order to balance the system, the controller perturbs

the states, δUh, to produce a residual perturbation δRh,U as a negative feedback signal

until the nonlinear residual is balanced (zero) again. The response of the system is the

perturbed output, which then gives the output perturbation. However, if the nonlinear

system is expensive to solve, i.e., Nh is large, the computational cost of the sensitivity

calculation increases dramatically as the design space dimension Nµ increases. A more

efficient approach is to use the adjoint, which bypasses the expensive nonlinear system

solve (feedback control) to directly produce the output perturbations. By substituting the

residual perturbation due to the variation of the design parameter, δRh,µ, into Eqn. 3.23

and Eqn. 3.24, or by directly using the definition of adjoint, Eqn. 3.22, we can easily

estimate the output perturbation,

δJh = ΨT
h δRh,µ. (3.34)

46

This approach scales linearly with the dimension of the design space, since only one

residual evaluation δRh,µ is required for each design parameter, which is much cheaper

than solving the nonlinear system. The output sensitivity vector can then be computed

as
dJh
dUh

= ΨT
h

∂Rh

∂µ
. (3.35)

Sometimes the output definition directly involves the design parameter, then the sen-

sitivity calculation should also include the partial derivative terms with respect to the

parameter,
dJh
dµ

=
∂Jh
∂µ

+ ΨT
h

∂Rh

∂µ
. (3.36)

Figure 3.2: Nonlinear system solve as a feedback control system.

3.4 Adjoint-Based Output Error Estimation

Another application of adjoints is estimating the output error and providing effective

indicators for mesh adaptation. Again, let’s start with the duality of a linear system.

Suppose u and ψ are the exact primal and adjoint solutions respectively, while uh and

ψh are their discrete counterparts. Then if we define the output error as the difference

of the outputs evaluated with the discrete numerical solution and the exact solution, we

have

δJ = J (uh)− J (u) = 〈uh,g〉 − 〈u,g〉
= 〈uh − u,g〉 = 〈uh − u,−L∗ψ〉
= −〈L(uh − u),ψ〉 = −〈Luh − f ,ψ〉
= −〈r(uh),ψ〉.

(3.37)

47

Eqn. 3.37 provides a way to estimate the numerical error in the output induced by a

finite dimensional discretization. The error is in a form of the residual error weighted

by the adjoint solution, and thus it is often called the adjoint weighted residual (AWR)

or dual weighted residual (DWR) approach. Nonetheless, the error bound is not directly

computable as the exact adjoint solution ψ is in general unavailable and has to be approx-

imated. A first try would be using the discrete adjoint solution on the same discretization,

ψh, as an approximation of the exact adjoint, which gives

δJ = −〈r(uh),ψh〉+ 〈r(uh),ψh −ψ〉
= − Rh(uh,ψh)︸ ︷︷ ︸

discrete weak form

+ 〈r(uh),ψh −ψ〉︸ ︷︷ ︸
remaining error bound

= 〈r(uh),ψh −ψ〉.

(3.38)

The use of a discrete adjoint solution recovers the discrete weak form of the primal problem

which is always zero if the discrete primal problem is appropriately solved (sometimes also

referred to as Galerkin orthogonality in the context of error estimation). The remaining

error is then the residual error weighted by the adjoint error. This form is quite interesting

as it indicates that the output accuracy depends on not only the accuracy of the primal

problem, but also on the accuracy of the adjoint solution, which may never be actually

computed during the simulation. The remaining error offers a simple bound for the output

error

‖δJ ‖ ≤ ‖r(uh)‖‖ψh −ψ‖, (3.39)

where ‖·‖ can be any well-defined norm on L2(Ω). Typically, the adjoint error ψh−ψ is at

the order ofOp+1, while the residual error r(uh) isO(hp+1−m), wherem is the highest order

of derivative involved in the operator L. Thus, the overall error in any output functional

is at the order of O(h2p+2−m). This superconvergent property is one of the key benefits

of using Galerkin type of finite element methods. Although the error bound breaks when

the primal or adjoint solution exhibits singularities, the superconvergence rate can still be

recovered by proper adaptations. For methods like finite difference and finite volume, the

first term in Eqn. 3.38 does not vanish and the output error only converges at an order

of p + 1 unless further postprocessing with the adjoint is employed, i.e., subtracting the

first adjoint correction term.

Galerkin orthogonality prevents the effective use of the current space adjoint solution

to approximate the exact adjoint solution. A more expensive, but still affordable ap-

proach is using the adjoint solution from a finer discretization. Let’s define a numerically

computable error estimate for the output functional as the difference between the outputs

48

computed with a coarse space (discretization) solution uH and a fine space one uh,

δJ = JH(uH)− Jh(uh) = Jh(uH)− Jh(uh)
= J ′h[uh]δuh +O(δu2

h) δuh = uH − uh

= −R′h[uh](δuh,ψh) +O(δu2
h)

= −Rh(uH ,ψh)︸ ︷︷ ︸
error estimate

+Rh(uh,ψh)︸ ︷︷ ︸
weak form = 0

+O(δu2
h)

⇒ δJ ≈ −Rh(uH ,ψh).

(3.40)

Similar to Eqn. 3.38, we can apply Galerkin orthogonality,

δJ = −Rh(uH ,ψH)−Rh(uH ,ψh −ψH)

= −RH(uH ,ψH)−Rh(uH ,ψh −ψH)

= −Rh(uH , δψh), δψh = ψh −ψH .
(3.41)

This form of error estimate resembles the from of error in Eqn. 3.38, which again implies

that the output error is high in regions where both the residual (primal error) and the

adjoint error are large.

For fully-discrete systems, the state solution vector on the coarse space and fine space

are of different dimensions, i.e., dim(UH) = NH < dim(Uh) = Nh. In order to utilize

the adjoint weighted residual method for estimating the output error, an injected state

from the coarse space to the fine space needs to be defined. We assume that the fine

approximation space contains the coarse approximation space, VH ⊂ Vh, such that a

lossless state injection exists,

UH
h = IHh UH , (3.42)

where UH
h is the injected state on the fine space and IHh is the coarse-to-fine state injection

(prolongation) operator, which can be obtained using an L2 least-squares projection.

49

With the injected states, we can estimate the output error as

δJ = JH(UH)− Jh(Uh) = Jh(U
H
h)− Jh(Uh)

=
∂Jh
∂Uh

δUh +O(δU2
h) δUh = UH

h −Uh

= −ΨT
h

∂Rh

∂Uh

δUh +O(δU2
h)

= −ΨT
h δRh +O(δU2

h)

= −ΨT
h [Rh(U

H
h)−Rh(Uh)] +O(δU2

h)

= −ΨT
hRh(U

H
h) +O(δU2

h)

⇒ δJ ≈ −ΨT
hRh(U

H
h).

(3.43)

Again, invoking Galerkin orthogonality and assuming no loss of the projection from the

coarse space to the fine space, we can rewrite Eqn. 3.43 as

δJ = −(ΨH
h)TRh(U

H
h)− (Ψh −ΨH

h)TRh(U
H
h)

= −ΨT
HRH(UH)− (δΨh)

TRh(U
H
h)

= −(δΨh)
TRh(U

H
h),

(3.44)

where ΨH
h = IHh ΨH is the projected adjoint from the coarse space to the finer one.

Both the continuous form of the error estimate, Eqn. 3.40 and Eqn. 3.41, and the fully-

discrete form of error estimate, Eqn. 3.43 and Eqn. 3.44, require the fine space adjoint

solution, whose solution relies on the residual and output linearization at the fine space

primal solution u∗h or U∗h,

J ′[uh]|u∗
h

(wh) + R′[uh]|u∗
h

(wh,ψh) = 0
(
∂Jh
∂Uh

∣∣∣∣
U∗
h

)T

+

(
∂Rh

∂Uh

∣∣∣∣
U∗
h

)T

Ψh = 0.
(3.45)

If we solve the fine space primal problem to obtain u∗h or U∗h, the error estimate itself is of

little use as the output difference can be computed exactly using the coarse and fine space

states directly, however, effective error indicators can still be obtained for adaptation

purposes. In practice, the fine space primal state is not solved exactly. Instead, an

approximation of the fine space primal solution, ũh or Ũh, is used to obtain the output

50

and residual linearization. Then the adjoint equations are solved as

J ′[uh]|ũh(wh) +R′[uh]|ũh(wh,ψh) = 0
(
∂Jh
∂Uh

∣∣∣∣
Ũh

)T

+

(
∂Rh

∂Uh

∣∣∣∣
Ũh

)T

Ψh = 0.
(3.46)

In this work, the injected coarse space solution UH
h , is used after several smooth iteration

on the fine space primal equation to approximate the fine space primal solution. Then

the adjoint equation in Eqn. 3.46 is solved as a linear system using the GMRES linear

solver mentioned in Section 2.4.3.

3.4.1 Error Localization

A key feature of the DWR method is the ability of localizing the output error to mesh

elements by keeping track of the error contribution from each mesh element,

δJ = −ΨT
hRh(U

H
h) = −

Ne∑

e=1

ΨT
h,eRh,e(U

H
h), (3.47)

where ΨT
h,e and Rh,e(U

H
h) are the elemental adjoint and residual in element e, which

are easily uncoupled in the DG method. For other methods which involve continuous

constraints on the elemental interfaces, the error associated with the shared DOF between

elements needs to be carefully distributed to adjacent elements. Therefore, DG methods

are especially suitable for error localization and hence mesh adaptation.

The absolute value of the elemental error contribution often serves as a good indicator

for adaptation purposes, although the possible error cancellation between elements is

ignored. Formally, the elemental adaptive error indicator Ee is defined as

Ee = |ΨT
h,eRh,e(U

H
h)|, E =

Ne∑

e=1

Ee, (3.48)

where E is the sum of the error indicator, which is sometimes used as a more conservative

estimate of the output error.

In practice, the output error estimation and error localization procedure can be sum-

marized as follows:

1. Solve the nonlinear discrete system in the current coarse space RH(UH) = 0 to

obtain the coarse space solution UH .

51

2. Inject the coarse space solution to the fine space, UH
h = IHh UH .

3. Obtain the fine space adjoint solution either by solving the fine space primal and

adjoint problem exactly, or through an approximation as discussed in Eqn. 3.46.

4. Evaluate the fine space residual with the injected states, Rh(U
H
h).

5. Weight the fine space residual with the fine space adjoint globally to produce the er-

ror estimate, δJ = −ΨT
hRh(U

H
h), and locally to obtain the adaptive error indicator,

Ee = |ΨT
h,eRh,e|.

A graphical representation of the above procedure applied to a subsonic laminar flow over

a NACA 0012 airfoil is shown in Figure 3.3. The freestream flight condition is the same

as those used in Figure 3.1. If we look at the fine space quantities involved in the error

estimation procedure in Figures 3.3d–3.3f, the adaptive error indicator is high only if the

residual is high and the output is sensitive to it, i.e., adjoint is high. For example in

regions behind the airfoil, the residual is high since the element size is large, however the

error contribution from these areas is small as the adjoint is small in these regions.

The weighting provided by the adjoint solution brings in the global output sensitivity

information, since the solution of the adjoint involves a residual Jacobian inverse which

couples the system DOF together. For convection-dominated problems that are of particu-

lar interest in aerospace engineering, such as the flow problems at high-Reynolds numbers,

the residual Jacobian inverse is usually a dense matrix even though the Jacobian itself is

often a banded sparse matrix. Hence a local residual perturbation (inaccurate solution)

can affect the approximation far away, i.e., the error gets propagated through the convec-

tion nature of the system. More generally, if we consider the local residual error arising

in the system as a source term, the Green’s function of the original differential operator

convolves with the residual source to produce a state solution error and thus an output

error. The Green’s function for elliptic problems decays logarithmically from the error

source, and hence the residual error itself is often an effective indicator for adaptation.

On the other hand, hyperbolic systems possess a Green’s function which does not decay

along the characteristic and hence the error is transmitted along the characteristic in-

definitely [131]. Therefore, for convection-dominated problems in aerospace engineering,

especially the flow problems involved in aerodynamic design, it is crucial to incorporate

the error transport during the error localization and adaptation.

52

(a) coarse space states UH (b) coarse space residual RH(UH)

(c) injected states UH
h (d) fine space residual Rh(UH

h)

(e) fine space adjoint Ψh (f) adaptive error indicator E

Figure 3.3: A summary of the error estimation and error localization procedure applied to
a laminar flow simulation over a NACA 0012 airfoil. The airfoil angle of attack is α = 0◦,
and the freestream Reynolds number and Mach number are Re∞ = 5000 and M∞ = 0.5,
respectively.

53

3.5 Adjoint Consistency

When we used the adjoint to either compute the output sensitivity or estimate the

discretization induced output error, we assumed the discrete adjoint solution, ψh or Ψh,

obtained on a finite dimensional space Vh, is a faithful representation of the exact adjoint

solution ψ. As discussed in Section 3.4, the convergence of the output functional depends

on not only the primal problem but also the adjoint problem associated with the specific

output. The discrete output obtained using the discrete solution only approaches the

exact output if the adjoint error approaches zero as the discretization spacing vanishes,

and so does the error in the discrete sensitivity analysis. The convergence of both the

primal problem and the adjoint problem requires a consistent and stable discretization.

The stability of the discretization is ensured by the numerical fluxes and appropriate solver

setting described in Chapter 2, while presently, we are interested in the consistency. The

impact of adjoint consistency, also referred to as dual consistency, has been studied by

several authors in the context of DG methods [113, 124, 132]. We follow the definition

proposed by Lu [113] in this work.

Primal consistency in variational form requires the exact primal solution u ∈ V to

satisfy the finite-dimensional weak form

Rh(wh,u) = 0 ∀wh ∈ Vh, (3.49)

where the finite dimensional approximation space is assumed to be a subset of the infinite

dimensional space, Vh ⊂ V . Similarly, the output functional Jh and the primal semilinear

weak form Rh are said to be adjoint-consistent or dual-consistent if the exact adjoint

solution ψ ∈ V is an admissible solution of the finite dimensional weak form of the

adjoint equation

J ′h[uh](wh) +R′h[uh](wh,ψ) = 0 ∀wh ∈ Vh. (3.50)

Even if Eqn. 3.50 does not hold, a discretizations can still be asymptotically dual consistent

if Eqn. 3.50 holds when the mesh spacing h vanishes,

lim
h→0

(
sup

wh∈Vh

|J ′h[uh](wh) +R′h[uh](wh,ψ)|
‖wh‖Vh

)
= 0, (3.51)

As indicated by both Eqn. 3.41 and Eqn. 3.44, adjoint solution error also affects the

convergence of the primal approximation and is essential for output superconvergence [95,

123, 96, 113, 124, 125, 132]. The adjoint solution obtained from an adjoint-inconsistent

54

discretization bears irregular or spurious oscillations even if the exact solution is smooth,

which provides inaccurate error estimates and hence drives mesh adaptation in incorrect

areas [113, 124, 132]. Adjoint inconsistency in DG often occurs when incorrect interior

treatment and boundary condition enforcement are adopted [113, 132], or when the source

term discretization involves state gradients that require additional stabilization [124, 125],

e.g., the source term in RANS equations. In general, discretizations that are found to be

adjoint inconsistent can often be made adjoint consistent by adding terms to either the

semilinear weak form or the output functional.

55

CHAPTER 4

Aerodynamic Optimization Problem Formulation,

Error Estimation and Mesh Adaptation

As discussed in Chapter 3, adjoint-based methods have shown much success in either

output gradient computation for aerodynamic optimizations or output error estimation

for standalone CFD simulations. However less work has been done to integrate these

two applications, i.e., employing adaptive CFD in an optimization problem. There are

several main obstacles hampering the use of adjoint-based adaptive CFD in aerodynamic

optimization, even though the reuse of adjoints in gradient-based optimization could po-

tentially buy more efficiency in addition to the accuracy improvement. First of all, aerody-

namic shape optimization often undergoes significant shape changes and hence vast flow

field variations, which heavily relies on the robustness of the CFD solver to avoid solving

failures during the optimization. Although more efficient than the prevalent second-order

finite-volume methods, high-order finite-element methods such as DG, in which error es-

timation and mesh adaptation are often used, in general lack robustness, especially for

steady-state problems due to less dissipation in the system. As a result, advanced adap-

tation techniques, such as anisotropic mesh adaptation or mesh optimization have to be

used to not only improve the accuracy but also to help improve the robustness. Secondly,

traditional error estimation and mesh adaptation techniques are often targeted for a single

scalar output, while aerodynamic optimization problems usually involve multiple outputs,

including the objective output and the constraint outputs. The errors in the constraint

outputs may indirectly affect the accuracy of the objective and hence the optimization

results. Therefore, a systematic way of incorporating the errors in both the objective

and the constraints has to be developed for effectively estimating the error and adapting

the mesh. Finally, the mesh topology and resolution changes in the mesh adaptation

may be incompatible with traditional aerodynamic optimization frameworks. Thus, more

carefully designed optimization frameworks should be developed to take advantage of the

56

various fidelity offered by adapted meshes and to achieve the best efficiency of adaptive

CFD in optimizations.

The following two chapters will focus on tackling the issues mentioned above. In this

chapter, we will formulate the constrained aerodynamic optimization problem with an

adjoint-based approach in Section 4.1 and Section 4.2, based on which an objective error

estimator is derived in Section 4.3 to take into account the effects of constraint output

errors. A review of the anisotropic mesh adaptation techniques using the proposed error

estimator is given in Section 4.4. The integration of the adaptive CFD and the traditional

gradient-based optimization are covered in Chapter 5.

4.1 Continuous and Discrete Optimization

An aerodynamic shape optimization problem can be stated as a search for the design

x over the design space X that minimizes a given objective function J ,

min
x

J (u,x) u ∈ V , x ∈ X ,

s.t. Re(u,x) = 0,

Rie(u,x) ≥ 0,

(4.1)

where J : V × X → R represents a scalar objective function, Re : V × X → Rne and

Rie :V × X → Rnie denote ne equality and nie inequality constraints, respectively. The

objective and constraints are defined by the outputs (responses) of the flow equations,

for example lift or drag, which consequently depend on the flow state variables u. The

state u is the solution of the governing equations, lying in the solution space V , which

can be an infinite-dimensional space. The governing equations, often the Navier-Stokes

equations or the Euler equations in the inviscid limit, can be represented by a semilinear

form in a variational setting as presented in Chapter 2,

R(u,w; x) = 0, ∀ w ∈ V , (4.2)

where the semilinear residual map R : V × V → R is the weak formulation of the flow

equation, in which x often presents as either boundary terms or source terms. The state

u ∈ V is solved within the design space X to satisfy the governing equations, and this

implicitly defines u as a function of x: u = u(x). Moreover, the optimal design x has to

fall into the feasible space F(X) = {x ∈ X : Re(u,x) = 0,Rie(u,x) ≥ 0} that satisfies

the constraints. Depending on the optimization algorithm, however, intermediate designs

in an iterative process may not be in the feasible set.

57

Although the adjoint solution is not required in evaluating the objective output itself,

it is needed for the output gradient calculations and error estimation purposes. Similarly,

we rewrite the adjoint equation derived in Chapter 3,

J ′[u](w; x) +R′[u](w,ψ; x) = 0, ∀ w ∈ V . (4.3)

which also implicitly defines the adjoint solution as a function of the design x, ψ = ψ(x).

We generally cannot solve the PDEs in Eqn. 4.2 and Eqn. 4.3 analytically, and hence we

discretize them on a finite-dimensional space over the computational domain, either in a

weak formulation

Rh(uh,wh; x) = 0, ∀ wh ∈ Vh,

J ′h[uh](wh; x) +R′h[uh](wh,ψh; x) = 0, ∀ wh ∈ Vh;
(4.4)

or in a fully-discrete form as

Rh(Uh,x) = 0,
[
∂Jh
∂Uh

∣∣∣∣
Uh,x

]T
+

[
∂Rh

∂Uh

∣∣∣∣
Uh,x

]T
Ψh = 0.

(4.5)

In this work, we use the discrete adjoint approach, in which the adjoint equation is di-

rectly derived from the fully-discrete primal discretization as shown in Eqn. 4.5 rather than

directly discretizing the exact adjoint equation Eqn. 4.3, i.e., the continuous adjoint ap-

proach. Although both approaches should be consistent with each other for discretizations

taking variational formulations, e.g., finite element methods, and are expected to converge

to the optimum design of the original continuous optimization problem Eqn. 4.1 if the

discretization is both primal and dual consistent. However, subtle differences have been

observed between the continuous and discrete adjoint approaches, especially for methods

without a variational weak form, such as finite-difference and finite-volume methods. In

short, the continuous approach provides an approximation of the gradient for the exact

output functional J , while the discrete adjoint approach offers an exact gradient (if the

residual partial derivative is computed analytically) of the approximated output Jh. In

practice, only the approximated output Jh is available in the optimization. The contin-

uous adjoint approach may thus suffer from convergence problems as the approximated

gradient of the exact output sometimes cannot predict the changes in the discretized out-

put effectively. Therefore, the discrete adjoint approach is in general more favorable in

practice besides its easier derivation and implementation in an implicit solver used in this

58

work.

In the rest of the exposition, we will only consider the fully-discrete form of the opti-

mization problem,

min
x

Jh(Uh,x), Uh ∈ RN , x ∈ X

s.t. Rh(Uh,x) = 0,

Re
h(Uh,x) = 0,

Rie
h (Uh,x) ≥ 0.

(4.6)

The equality and inequality constraints are also vectorized in the equation above. In this

work, continuous and discrete optimization refer to the optimization governed by PDEs

in continuous and discretized form, while in other contexts these terms may refer to the

optimization with continuous and discrete design spaces.

4.2 Optimization Formulation via the Adjoint

Inactive inequality constraints, Rie
ia, do not affect the optimization explicitly, while the

active ones, Rie
a , behave like equality constraints. We omit the subscript h here for simpler

exposition. In general, the inequality constraints can also be transformed into equality

constraints with non-negative slack variables [133]. For simplicity, we only consider the

active inequality constraints and the equality constraints, put together into one vector of

dimension Nt as trim constraints, (Rtrim)T = [(Re)T (Rie
a)T] ∈ RNt ,

Rtrim(U,x) = Jtrim(U,x)− J̄trim = 0, (4.7)

where J̄trim ∈ RNt is a set of Nt target trim outputs, for example, the target lift in an

airfoil drag minimization problem. In order to distinguish the trim outputs from the

objective output, we denote the latter by Jadapt ∈ R, as the objective output is directly

targeted for adaptation.

The Lagrangian function associated with Eqn. 4.6 that augments the flow equations

and trim constraints can then be written as

L(U,x,λ,µ) = Jadapt(U,x) + λTR(U,x) + µTRtrim(U,x), (4.8)

where λ ∈ RN and µ ∈ RNt are the Lagrange multipliers associated with PDE constraints

and the trim constraints, respectively. The dual problem for the original optimization

problem can also be derived using the Lagrangian function in Eqn. 4.8. Although the

59

output function is often convex with respect to the states U, the convexity with respect

to the design variables x is not guaranteed. Thus the strong duality is not guaranteed here,

however, the first-order necessary condition, or the Karush-Kuhn-Tucker condition can

still be applied assuming at least one local minimum exists for the discrete optimization

problem,

∂L
∂x

=
∂Jadapt

∂x
+ λT

∂R

∂x
+ µT

∂Rtrim

∂x
= 0, (4.9a)

∂L
∂U

=
∂Jadapt

∂U
+ λT

∂R

∂U
+ µT

∂Rtrim

∂U
= 0, (4.9b)

∂L
∂λ

= R(U,x) = 0, (4.9c)

∂L
∂µ

= Rtrim(U,x) = 0. (4.9d)

The above optimality condition can be a large, coupled, nonlinear system, at least larger

and more coupled compared to the primal and adjoint equations, especially for high-

dimensional optimization problems. Solving this system in the full space is intractable for

complex systems, when solving the original governing PDE is already challenging. One

popular and most widely-used alternative in aerodynamic optimization is to solve the four

subsystems individually and then coupled for the optimization, especially the primal and

adjoint systems. These kind of methods are termed as reduced space methods in contrast

to the full space methods, where the whole system is solved simultaneously. In this work,

we used the former approach for several reasons. First of all, the PDE solver for large-scale

primal and adjoint equations have been developed for decades and are now very efficient

and robust. Another reason is that the whole system is often very ill-conditioned, whereas

the four subsystems are typically better conditioned individually [134]. Additionally, most

of the standard optimization packages fail with very high dimensional systems.

It’s almost clear that the flow primal equations Eqn. 4.9c and the associated adjoint

equation 1 Eqn. 4.9b are solved by the flow solver, while the design stationarity conditions

Eqn. 4.9a are handled by the optimizer. On the other hand, the trimming equations in

Eqn. 4.9d can be either enforced by the optimizer or the flow solver. We will call the first

approach optimizer-based trimming (OBT) and refer to the second one as solver-based

trimming (SBT) in the rest of the thesis. We will cover both approaches here, however,

most of the results in this thesis are obtained using the SBT approach, OBT results can

be found in [67]. Although more expensive compared to the OBT approach, SBT has

1We call this an adjoint equation since the derivation resembles the adjoint equations discussed earlier
in Chapter 3.

60

been shown to be more robust, especially in multipoint optimizations [135]. Moreover,

the OBT approach requires more knowledge in the optimizer when coupled with error

estimation and mesh adaptation, while the SBT approach can be more easily coupled

with an adaptive CFD framework. More details will be covered in Chapter 5.

4.2.1 Optimizer-Based Trimming

During the optimization, we solve the flow primal equations each time when the design

updates. In other words, Eqn. 4.9c is always satisfied. Then we can choose the adjoint

variables λ such that Eqn. 4.9b is enforced after each successful flow solve, i.e., solving

the adjoint equation,

λT = −
(
∂Jadapt

∂U
+ µT

∂Rtrim

∂U

)
∂R

∂U

−1

= (Ψadapt + Ψtrimµ)T . (4.10)

We call both λ and µ coupled adjoint variables since they incorporate the adjoints of both

the objective (adapt) and constraint (trim) outputs, Ψadapt ∈ RN×1 and Ψtrim ∈ RN×Nt ,

which are both solved by the flow solver using the discrete adjoint equations

(
∂R

∂U

)T
Ψadapt +

(
∂Jadapt

∂U

)T
= 0,

(
∂R

∂U

)T
Ψtrim +

(
∂Jtrim

∂U

)T
= 0. (4.11)

Now the optimality conditions in Eqn. 4.9 reduce to only two equations, Eqn. 4.9a and

Eqn. 4.9d. Moreover, we can substitute Eqn. 4.10 into Eqn. 4.9a to evaluate the gradient

of the Lagrangian function with respect to the design variables,

∂L
∂x

=
∂Jadapt

∂x
+ λT

∂R

∂x
+ µT

∂Rtrim

∂x

=
∂Jadapt

∂x
+ (Ψadapt)T

∂R

∂x
+ µT

[
∂Rtrim

∂x
+ (Ψtrim)T

∂R

∂x

]

=
dJadapt

dx
+ µT

dJtrim

dx
= 0.

(4.12)

The last equality is obtained via adjoint-based sensitivity analysis, where d(·)/dx denotes

the total derivative with respect to design variables by considering the states as an implicit

function of x, U(x).

Now the optimization problem has been reduced to finding an optimal design x and

the adjoint variable (Lagrange multiplier) µ satisfying Eqn. 4.12 and Eqn. 4.9d. The

61

optimization process can then be equivalently written as

flow solver: optimizer:

R(U,x) = 0
dJadapt

dx
+ µT

dJtrim

dx
= 0

dJadapt

dx
=
∂Jadapt

∂x
+ (Ψadapt)T

∂R

∂x
Rtrim(U,x) = 0

dJtrim

dx
=
∂Jtrim

∂x
+ (Ψtrim)T

∂R

∂x

(4.13)

We can see above that in the OBT approach, both the design optimality (stationarity)

condition and the trimming equations are handled in the optimizer, while the flow solver is

only responsible for providing the output values and the sensitivity information. Note that

although we have the expression for the adjoint variable λ in Eqn. 4.10, it’s not explicitly

solved or stored in the optimization. The flow solver solves both the flow primal and

adjoint equations to evaluate the adapt and trim outputs as well as their gradients. The

optimizer takes the output and gradient information to determine the optimal design

and adjoint variables (Lagrange multipliers) µ to satisfy the reduced optimality equation

shown on the right in Eqn. 4.13. The optimization process is summarized by the flowchart

shown in Figure 4.1.

Figure 4.1: Flowchart of optimization using an optimizer-based trimming approach.

4.2.2 Solver-Based Trimming

In the SBT approach, both the flow equations and the trim equations are enforced by

the flow solver. A set of design variables are dedicated to satisfying the trim constraints,

denoted as trim variables xt, dim(xt) = dim(Jtrim) = Nt. For example, in aerodynamic

optimizations, angle of attack can be the trim variable for the lift trimming constraint

62

while the wing or tail deflection can be the trim variable for the moment trimming con-

straint. The problem involved in the flow solver is then a coupled system,

R(U,xt,xs) = 0,

Rtrim(U,xt,xs) = 0,
(4.14)

which implicitly defines both U and xt as a function of the active design parameters

xs, often the shape parameters in the original design parameter vector, x = [xt,xs].

The trimming equation shown in Eqn. 4.14 is solved using a Newton-Raphson method,

in which the trim variables are iteratively updated as shown Figure 4.2 to enforce the

trimming equation.

Figure 4.2: Trimming process using Newton-Raphson iteration.

This time, the KKT optimality condition in Eqn. 4.9 reduces to

∂L
∂xs

=
∂Jadapt

∂xs
+ λT

∂R

∂xs
+ µT

∂Rtrim

∂xs
= 0, (4.15)

∂L
∂xt

=
∂Jadapt

∂xt
+ λT

∂R

∂xt
+ µT

∂Rtrim

∂xt
= 0, (4.16)

∂L
∂U

=
∂Jadapt

∂U
+ λT

∂R

∂U
+ µT

∂Rtrim

∂U
= 0. (4.17)

Again, we can solve Eqn. 4.17 for the coupled adjoint λ,

λT = −
(
∂Jadapt

∂U
+ µT

∂Rtrim

∂U

)
∂R

∂U

−1

= (Ψadapt + Ψtrimµ)T . (4.18)

Substituting the solution of λ into Eqn. 4.16, we can also obtain the solution of the

63

coupled adjoint variable µ as

∂Jadapt

∂xt
+ (Ψadapt)T

∂R

∂xt
+ µT

∂Rtrim

∂xt
+ µT (Ψtrim)T

∂R

∂xt
= 0

∂Jadapt

∂xt
+ (Ψadapt)T

∂R

∂xt
+ µT

∂Jtrim

∂xt
+ µT (Ψtrim)T

∂R

∂xt
= 0

dJadapt

dxt
+ µT

dJtrim

dxt
= 0

=⇒ µT = −dJ
adapt

dxt

(
dJtrim

dxt

)−1

. (4.19)

If we treat xt together with the flow states as the state vector for the coupled system in

Eqn. 4.14, we can also derive λ and µ as the adjoint variables associated with the states

U and xt [136]. This approach has also been used to couple different disciplines [137, 138,

139, 140, 141], for instance in an aerodynamic-structure coupled optimization problem,

R and Rtrim can be the flow and structure governing equations while U and xt are the

corresponding flow states and the structure states, respectively. If we substitute both

Eqn. 4.18 and Eqn. 4.19 into Eqn. 4.15, the optimality conditions reduce to only one

equation,

∂L
∂xs

=
∂Jadapt

∂xs
+ λT

∂R

∂xs
+ µT

∂Rtrim

∂xs

=
∂Jadapt

∂xs
+ (Ψadapt)T

∂R

∂xs
+ µT

[
∂Rtrim

∂xs
+ (Ψtrim)T

∂R

∂xs

]

=
dJadapt

dxs
+ µT

dJtrim

dxs

=
dJadapt

dxs
− dJadapt

dxt

(
dJtrim

dxt

)−1
dJtrim

dxs
= 0

⇒ DJadapt

Dxs
=
dJadapt

dxs
+ µT

dJtrim

dxs
=

dJadapt

dxs︸ ︷︷ ︸
adapt output gradients

− dJ
adapt

dxt

(
dJtrim

dxt

)−1
dJtrim

dxs︸ ︷︷ ︸
trim correction

= 0.

(4.20)

In Eqn. 4.20, DJadapt/Dxs is the total gradient of the adapt output with respect to the

active design parameter xs when considering both the flow states and the trim variables

as implicit functions of the active design xs. The derivatives d(·)/dxs or d(·)/dxt, on

the other hand, denote the output gradients with respect to the trim or active design

parameters when the rest of the design variables are fixed. For instance, dJadapt/dxt is

computed via the adjoint method when xs is fixed and only considering the states U as

64

an implicit function of the trim variables, U(xt), i.e., in the trimming subproblem shown

in Figure 4.2.

Now the original optimization problem has been reduced to an unconstrained optimiza-

tion problem for the optimizer since both the PDE constraints and trim constraints are

enforced by the flow solver. The optimization problem can then be equivalently written

as
flow solver: optimizer:

R(U,xt,xs) = 0
DJadapt

Dxs
= 0

Rtrim(U,xt,xs) = 0

µT = −dJ
adapt

dxt

(
dJtrim

dxt

)−1

DJadapt

Dxs
=
dJadapt

dxs
+ µT

dJtrim

dxs

(4.21)

The optimization process using the SBT approach is summarized by the flowchart shown

in Figure 4.3.

Figure 4.3: Flowchart of optimization using a solver-based trimming approach.

4.3 Output Error Estimation for Optimization

Optimization using either the OBT or SBT approach is expected to converge to the

optimum of the discrete optimization problem in Eqn. 4.6 and hence approaches the

optimum of the continuous optimization problem in Eqn. 4.1. However, since in a practical

calculation, on a finite-dimensional space, the discretization error appears in both the flow

equations and the adjoint equations, optimality cannot be guaranteed even when Eqn. 4.9

is satisfied. In order to control discretization errors during the optimization, we introduce

adaptive CFD into gradient-based optimization which will be covered in details in the

following sections.

65

4.3.1 Output Error Estimation for Standalone Simulations

We follow the definition used in Chapter 3 for the output error, which is the difference

between outputs evaluated with the coarse and fine space solutions. Given a fixed design,

if we consider two standalone simulations performed on both the coarse and fine spaces,

Coarse space: design x→ RH(UH ,x) = 0→ UH → JH(UH ,x)

Fine space: design x→ Rh(Uh,x) = 0→ Uh → Jh(Uh,x)
(4.22)

we would normally expect difference in the outputs on the coarse and fine spaces. The

difference can then be estimated and used as a surrogate for the output error,

δJ = JH(UH)− Jh(Uh)

= Jh(U
H
h)− Jh(Uh) =

∂Jh
∂Uh

δU

= −ΨT
h δRh = −ΨT

h [Rh(U
H
h)−Rh(Uh)]

= −ΨT
hRh(U

H
h)

(4.23)

where Ψh is the fine space adjoint and UH
h is the state injected into the fine space from the

coarse one, which generally will not give a zero fine space residual, Rh(U
H
h) 6= Rh(Uh) =

0. The error estimate given in Eqn. 4.23 originates from the small perturbation assump-

tions, and is valid for outputs whose definition does not change between the coarse and fine

spaces, JH(UH) = Jh(U
H
h). Detailed derivations of Eqn. 4.23 can be found in Chapter 3.

4.3.2 Output Error Estimation for Optimization Problems

Normally, error estimation is applied only to the output in which we are most in-

terested, i.e., the objective (adapt) output. However, our optimization problem requires

simultaneous solutions of the flow equations and the trim equations, either loosely coupled

by the optimizer in the OBT approach or strongly coupled by the flow solver in the SBT

approach. Since the discretization errors exist in both the adapt and trim outputs, and

the trim output errors may indirectly affect the calculation of the objective [136], to take

this effect into account, the coupled adjoint should be used for the error estimation.

Consider a given fixed design in both the coarse and fine spaces, xH = xh = x, which

is of the same setting as in Eqn. 4.22. Since the design is fixed, the discretization error of

the objective output only comes from the inexact states solution UH . We can estimate

66

the error using the linearization of the objective output,

δJadapt(xH) = Jadapt
H (UH ,xH)− Jadapt

h (Uh,xh)

= Jadapt
h (UH

h ,xH)− Jadapt
h (Uh,xH)

=
∂Jadapt

h

∂Uh

δU +
∂Jadapt

h

∂xh
�
�>

0
δx

=
∂Jadapt

h

∂Uh

δU.

(4.24)

Since Eqn. 4.9a is always satisfied during the optimization as discussed earlier, we can

substitute it into the equation above,

δJadapt(xH) =
∂Jadapt

h

∂Uh

δU = −λTh
∂Rh

∂Uh

δU− µTh
∂Rtrim

h

∂Uh

δU

= −λTh δRh − µTh δRtrim
h

= −λTh [Rh(U
H
h ,xH)−Rh(Uh,xH)]− µTh [Rtrim

h (UH
h ,xH)−Rtrim

h (Uh,xH)]

= −λThRh(U
H
h ,xH)− µTh [Jtrim

h (UH
h ,xH)− Jtrim

h (Uh,xH)]

= −(Ψadapt
h + Ψtrim

h µh)
TRh(U

H
h ,xH)− µTh δJtrim(xH)

= −(Ψadapt
h)TRh(U

H
h ,xH)− µTh

(
Ψtrim
h

)T
Rh(U

H
h ,xH)− µTh δJtrim(xH)

= −(Ψadapt
h)TRh(U

H
h ,xH) + µTh δJ

trim(xH)− µTh δJtrim(xH)

= −(Ψadapt
h)TRh(U

H
h ,xH),

(4.25)

where δJtrim(xH) is a vector containing error estimates of the Nt trim outputs at the fixed

design xH . Following the definition of the output error in Eqn. 4.23, we have

δJtrim(xH) = Jtrim
H (UH ,xH)− Jtrim

h (Uh,xH) = Jtrim
h (UH

h ,xH)− Jtrim
h (Uh,xH)

= −
(
Ψtrim
h

)T
Rh(U

H
h ,xH).

(4.26)

Eqn. 4.25 is consistent with the previous analysis without the trim conditions, since we

keep the design fixed between the coarse and fine spaces, and because we assume that

the error only comes from the inexact state solution UH . In general, however, we need to

deal with both the objective error and the constraints error. The problem becomes worse

if we have high accuracy in the objective while little confidence in the constraint outputs,

or vice versa. If we run the optimization on the fine space and the coarse space, even

with the same target constraint outputs, we will generally obtain different designs. This

difference may come from the deviation of both the design parameters and the flow states,

67

and separate error estimation and mesh adaptation for the objective and trim outputs

can be inefficient.

Before estimating the objective error in an optimization problem, let’s start with a sim-

pler estimate, more specific to the SBT approach. Suppose that we have the fixed active

design xs = xs,H = xs,h on both the coarse and fine spaces. The trimming enforcement

often results in different trim variables and flow states,

Coarse space: active design xs →





RH(UH ,xt) = 0

Rtrim
H (UH ,xt) = 0

→ UH ,xt,H → JH(UH ,xt,H)

Fine space: active design xs →





Rh(Uh,xt) = 0

Rtrim
h (Uh,xt) = 0

→ Uh,xt,h → Jh(Uh,xt,h).

(4.27)

Again, linearizing the adapt output gives

δJadapt(xs,H) = Jadapt
H (UH ,xt,H ,xs,H)− Jadapt

h (Uh,xt,h,xs,h)

= Jadapt
h (UH

h ,xt,H ,xs,H)− Jadapt
h (Uh,xt,h,xs,H)

=
∂Jadapt

h

∂Uh

δU +
∂Jadapt

h

∂xt,h
δxt +

∂Jadapt
h

∂xs,h
��
�*0

δxs

=
∂Jadapt

h

∂Uh

δU +
∂Jadapt

h

∂xt,h
δxt.

(4.28)

Substituting in both Eqn. 4.16 and Eqn. 4.17 which are always enforced in the SBT

approach, we can write the error estimate above also in a dual weighted residual form,

δJadapt(xs,H) =
∂Jadapt

h

∂Uh

δU +
∂Jadapt

h

∂xt,h
δxt

= −λTh
(
∂Rh

∂Uh

δU +
∂Rh

∂xt,h
δxt

)
− µTh

(
∂Rtrim

∂Uh

δU +
∂Rtrim

h

∂xt,h
δxt

)

= −λTh δRh − µTh δRtrim
h

= −λTh [Rh(U
H
h ,xt,H ,xs,H)−Rh(Uh,xt,h,xs,H)]

− µTh [Rtrim
h (UH

h ,xt,H ,xs,H)−Rtrim
h (Uh,xt,h,xs,H)]

= −λThRh(U
H
h ,xt,H ,xs,H)− µThRtrim

h (UH
h ,xt,H ,xs,H).

(4.29)

Since the trim equations are solved on both the coarse and fine spaces, and as the definition

of the outputs is often the same on the coarse space and the fine one, we expand the second

68

residual term above as

Rtrim
h (UH

h ,xt,H ,xs,H) = Jtrim
h (UH

h ,xt,H ,xs,H)− J̄trim

= Jtrim
H (UH ,xt,H ,xs,H)− J̄trim

= Rtrim
H (UH ,xt,H ,xs,H) = 0.

(4.30)

Hence Eqn. 4.29 can be simplified as

δJadapt(xs,H) = −λThRh(U
H
h ,xt,H ,xs,H)

= −(Ψadapt
h)TRh(U

H
h ,xt,H ,xs,H)− µTh (Ψtrim

h)TRh(U
H
h ,xt,H ,xs,H)

= δJadapt(xt,H ,xs,H) + µThδJ
trim(xt,H ,xs,H)

= δJadapt(xH) + µTh δJ
trim(xH),

(4.31)

where δJadapt(xH) and δJtrim(xH) are the standalone error estimates for the adapt output

and trim outputs, respectively, assuming the error only comes from the inaccurate flow

states. The first term δadapt(xH) represents directly the error from the inaccurate states

on the coarse space, UH , while the second term µTh δJ
trim(xH) accounts for the correction

from the inaccurate trim constraints satisfaction. This error estimate is valid for the

trimming problem when the active design is fixed, or in an optimization problem ignoring

the error in the objective due to inaccurate active design parameters. When we say

inaccurate active design parameters, we have to measure them at the optimal design, i.e.,

when the KKT conditions hold, since if we consider two separate optimization problems

on the coarse and fine spaces, the search path or the intermediate active designs are by

no means guaranteed to be the same or close, and thus the difference between the active

design variables are meaningless if the design is not close to optimal.

If we consider two optimization problems on the coarse and fine spaces, the optimal

designs x∗ (including xt and xs) are again expected to be different,

Coarse space: initial design x→ optimization→ UH ,x
∗
H → JH(UH ,x

∗
H)

Fine space: initial design x→ optimization→ Uh,x
∗
h → Jh(Uh,x

∗
h).

(4.32)

A complete error estimate for the objective output error for the optimal design on the

69

coarse space can be written as

δJadapt
opt = Jadapt

H (UH ,x
∗
H)− Jadapt

h (Uh,x
∗
h)

= Jadapt
h (UH

h ,x
∗
H)− Jadapt

h (Uh,x
∗
h)

=
∂Jadapt

h

∂Uh

δU +
∂Jadapt

h

∂xh
δx.

(4.33)

The equation above also implies that the error should be measured around the optimal

design, since the intermediate designs on the coarse and fine spaces can be very different

such that the linearization above may not hold anymore. At the optimal designs 2, we

have that the KKT conditions Eqn. 4.9 all hold now and thus we can rewrite the error

estimate by plugging in both Eqn. 4.9a and Eqn. 4.9b,

δJadapt
opt = Jadapt

h (UH
h ,x

∗
H)− Jadapt

h (Uh,x
∗
h)

=
∂Jadapt

h

∂Uh

δU +
∂Jadapt

h

∂x
δx

= −λTh
(
∂Rh

∂Uh

δU +
∂Rh

∂x
δx

)
− µTh

(
∂Rtrim

h

∂Uh

δU +
∂Rtrim

h

∂x
δx

)

= −λTh δRh − µTh δRtrim
h

= −λTh [Rh(U
H
h ,x

∗
H)−Rh(Uh,x

∗
h)]− µTh [Rtrim

h (UH
h ,x

∗
H)−Rtrim

h (Uh,x
∗
h)]

= −λThRh(U
H
h ,x

∗
H)− µThRtrim

h (UH
h ,x

∗
H)

(4.34)

Similarly, the second term vanishes if the trim equations are also enforced on the coarse

space, which is true for the coarse space optimized design x∗H ,

Rtrim
h (UH

h ,x
∗
H) = Jtrim

h (UH
h ,x

∗
H)− J̄trim

= Jtrim
H (UH ,x

∗
H)− J̄trim

= Rtrim
H (UH ,x

∗
H) = 0.

(4.35)

Therefore, the complete error estimate for the adapt output of the optimal design on the

2Here, we also assume that the discrete optimization problem only has one local optimum (convex)
such that the optimal designs on the coarse and fine spaces are close.

70

coarse space can be simplified as

δJadapt
opt = λThRh(U

H
h ,x

∗
H)

= −
(
Ψadapt
h + Ψtrim

h µh

)T
Rh(U

H
h ,x

∗
H)

= −
(
Ψadapt
h

)T
Rh(U

H
h ,x

∗
H)− µTh

(
Ψtrim
h

)T
Rh(U

H
h ,x

∗
H)

= δJadapt(x∗H) + µTh δJ
trim(x∗H),

(4.36)

which is very similar to the error estimate given in Eqn. 4.31. However, Eqn. 4.31 assumes

the same active design xs on both the coarse and fine spaces, which provides the estimate

for the objective error in a constrained trimming problem, i.e., the trimming condition is

always satisfied, such as in the SBT approach or in OBT when the optimizer only searches

along the feasible path. On the other hand, Eqn. 4.36 takes into account both the error

from the states and the error from the complete design parameters, xt and xs, but is only

valid at the optimal design point.

During the optimization process, the evaluations of Eqn. 4.31 and Eqn. 4.36 are in the

equivalent form,

δJadapt
eff = δJadapt(xH) + µTh δJ

trim(xH). (4.37)

However, the interpretation is different. If in the form of Eqn. 4.31, we assume a fine space

trimming flow simulation using the same active design, xs,h = xs,H , and we estimate the

difference between the adapt outputs on the coarse and fine spaces. On the other hand,

if in the form of Eqn. 4.36, it is neither the error of the objective nor the error of the

trim constraints when the design is away from optimal due to different design update

paths on the coarse and fine spaces; however, if measured at the coarse space optimal

design x∗H , it estimates the objective error taking effects from both the trim parameter

difference and the active design difference between the coarse and fine spaces. In the SBT

approach, the flow equations and the trimming equations are always solved as a coupled

system, such that the error estimate given by δJadapt
eff in Eqn. 4.37 is valid as an estimate

for the constrained flow simulations. While in the OBT approach where the trimming

equations are not necessary to hold for intermediate designs, yet δJadapt
eff in Eqn. 4.37 can

still be used as a more effective estimate than the objective error alone, to measure the

error level of the entire optimization and to provide effective indicators for adaptation in

optimization problems [67]. A physical interpretation of the adjoint variable µh is that

it provides the sensitivity of the objective output with respect to the trim outputs if the

trim constraints are enforced, as indicated by its solution in Eqn. 4.19, and therefore it

provides effective weighting to include trim output errors when we estimate the objective

71

output error.

4.3.3 Implementation

With the advantages of adjoint-based error estimation, we avoid the expensive solu-

tions of both the optimal design x∗h and the flow states Uh, i.e., the whole optimization

process on the fine space. This is because the error estimate requires only the flow and

trim residuals, which can be computed from xH and UH , without access to the fine-space

flow states or the optimal design. However, the estimation requires the fine-space coupled

adjoint, either λh or µh, to effectively combine the adapt output adjoint Ψadapt
h and the

trim output adjoints Ψtrim
h . Although the adjoint variable λh appears in the derivation

of the error estimates, it is not explicitly solved or stored in either the SBT or the OBT

approach, instead only µh is solved for the error estimation as shown in the final formula.

Depending on the handling of the trimming equations, µh is approximated differently.

In the OBT approach, the coupled adjoint is defined and updated via the optimizer, hence

the coarse space adjoint µH is extracted from the optimizer and used to approximate the

fine space adjoint µh. In the SBT approach, the coupled adjoint µH is solved inside the

flow solver during the trimming iterations. Similar to the adjoint approximation shown

by Eqn. 3.46 in Section 3.4, we can approximate the fine space adjoint µh by solving the

fine space adjoint problem Eqn. 4.19 linearized at a fine space smoothed states Ũh. In the

current work, µH is directly used in both the SBT and OBT approaches for simplicity.

With the solution of the coupled adjoint µh, the error estimate requires a combination

of both the adapt and trim outputs errors, weighted by µh. The output error estimates

require 1 + Nt fine space adjoint solutions, 1 for the adapt output and Nt for the trim

outputs. For the current work, Nt is small such that the computational cost increase for

the error estimate is relatively low. However, for optimization problems with a large set

of trimming constraints, the fine space adjoint solutions can add a considerable amount

of computational burden. Alternatively, we can define a combined output J c as

J c = Jadapt + µThJtrim, (4.38)

which resembles the Lagrangian function of the optimization problem. Then for error

estimation, we can solve the adjoint only once for the combined output J c, which is of

similar cost to one normal output error estimate [142].

72

4.4 Mesh Adaptation Incorporating Anisotropy

4.4.1 Error Localization

For a single output of interest, the error estimate can be localized in each element and

serves as an indicator for mesh adaptation. A common approach is to keep track of the

elemental error contribution, taking its absolute value as the indicator. More details can

be found in Section 3.4.1.

For the optimization problem, the error estimates given in Eqn. 4.37 can also be

localized in each element to provide indicators for adaptation,

Ee = |δJadapt
h,e + µTh δJ

trim
h,e |

= |(Ψadapt
h,e)TRh,e(U

H
h ,xH) + µTh (Ψtrim

h,e)TRh,e(U
H
h ,xH)|

≤ |(Ψadapt
h,e)TRh,e(U

H
h ,xH)|+ |µTh (Ψtrim

h,e)TRh,e(U
H
h ,xH)|

≤ Eadapt
e + |µTh |Eadapt

e = Ee,con

(4.39)

where Ee is the indicator that allows cancellations between objective and constraints error

indicators, Eadapt
e and E trim, while Ee,con provides a more conservative error indicator for

the optimization problem.

Given the localized error indicator, sometimes also called the adaptive indicator, there

exist many strategies to modify/adapt the discretization, including the computational

mesh and the approximation order, for reducing the output error. In CFD applications,

the most popular adaptation strategy is h-adaptation, in which only the computational

mesh is modified. h-adaptation often consists of mesh refinement, or possibly mesh coars-

ening if high efficiency is desired. Pure mesh node movement can also be used to reduce the

error, including the manipulation of the geometry nodes (r -adaptation) [143, 144, 145] and

high-order nodes in curved elements (q-adaptation) [146, 147]. For high-order methods,

we can also enrich the approximation space locally by increasing the approximation order

p, usually termed p-adaptation. For solutions exhibiting discontinuities, for example the

shocks that are often seen in transonic aerodynamic optimizations, h-adaptation is more

effective by isolating these regions. Although in the meantime, p-adaptation can be per-

formed in areas where the solution is smooth to further improve the efficiency. In this work,

we currently only consider standard h-adaptation where mesh refinement/coarsening is

used to improve the accuracy. p- , q-, r -adaptation techniques will be investigated in

future work.

In standard h-adaptation, the simplest way of adapting the mesh is through local

mesh modification, which is applicable to both structured and unstructured meshes. Of-

73

ten the local mesh coarsening needs information of surrounding elements, which adds

more complexity in the implementation. Thus, local mesh adaptation often only supports

refinement where local element is subdivided to enrich the local approximation. Another

approach to adapting the mesh is global re-meshing, in which a new mesh is generated

for the entire computational domain. This approach is mostly used in unstructured mesh

adaptation, as it often offers more flexibility in mesh generation and hence adaptation.

In this work, we use unstructured simplex meshes and the adaptation is based on global

re-meshing, where we allow mesh refinement and coarsening, as well as mesh DOF redis-

tribution to achieve the best efficiency.

In CFD simulations, one featured phenomenon is the strong directional dependence of

the flow solutions, such as the boundary layer or shocks, where the flow quantities vary

dramatically along one direction while rarely change along another. In these scenarios,

anisotropic mesh resolution, i.e., appropriate mesh stretching, is essential to efficiently

resolve the directional flow features. The error indicator in Eqn. 4.39, however, provides

no directional information to support anisotropic mesh adaptation. As a result, the mesh

anisotropy information has to be explicitly incorporated with the output error indicator

to enable efficient output based mesh adaptation. The mesh anisotropy information can

come either from directional solution error estimates through interpolation theory [148,

149, 150, 97, 151, 152, 153, 154, 155], or directly from anisotropic output error convergence

properties via a sampling approach [156, 157]. We consider both approaches. More

specifically, one adopts the solution Hessian-based anisotropy and the other uses the

output sampling-based anisotropy, while both rely on global re-meshing in the adaptation.

Detailed algorithms will be shown in Section 4.4.3 and Section 4.4.4, respectively.

4.4.2 Continuous Mesh Framework

Before we jump into the detailed anisotropic mesh adaptation algorithms, we first

introduce the continuous mesh framework that supports global re-meshing. In global

re-meshing, the original mesh, or background mesh, is used to stored the desired mesh

characteristics, including mesh sizes and stretching (anisotropy), which are different from

the current mesh. During the adaptation, a global mesh regeneration is performed such

that the new mesh matches the desired mesh characteristics. The mesh characteristic

information is often stored using a Riemannian metric field.

A Riemannian metric field, M(~x), is a smoothly varying field of symmetric positive

definite (SPD) tensors that can be used to encode anisotropic information of the compu-

tational mesh, including desired mesh sizes and stretching directions. The metric tensor,

M(~x), provides a measure of distance under the metric: for any two arbitrary points a

74

and b, the length of the vector
#„

ab under the metric, lM(
#„

ab), is defined as

lM(
#„

ab) =

∫ 1

0

√
#„

ab
TM(#„x a +

#„

abs)
#„

abds,
#„

ab = #„x b − #„x a, ∀~xa, ~xb ∈ Rd, (4.40)

where ~xa and ~xb are the spatial coordinates of the point a and b. After choosing a Cartesian

coordinate system and bases for the d -dimensional physical space, the metric field M can

be represented by a d× d SPD matrix. The set of points at the unit metric distance is an

ellipse in two-dimension and an ellipsoid in three-dimension spaces: eigenvectors of M
give directions of its principal axes, while the length of each axis (stretching) is the inverse

square root of the corresponding eigenvalue. A two-dimensional metric field is illustrated

in Figure 4.4.

Figure 4.4: In two dimensions, the set of points equidistant to a point O under the metric
measure M defines an ellipse. The two principal axes OA and OB are on the directions of
the eigenvectors of M, while their lengths are defined by the corresponding eigenvalues.

Given a desired metric field, a mesh that conforms to a metric field is one in which

each edge has the same length under the metric per Eqn. 4.40, to some tolerance. The

metric-conforming mesh is not unique; however, a family of metric-conforming meshes

have similar approximation properties [158, 156]. On the other hand, with a given com-

putational mesh, the mesh-implied metric field can be obtained by solving a linear system

for d(d+ 1)/2 independent entries at each element, which determines the elemental met-

ric, Me. For simplex elements, the equations in this system enforce that each of the

d(d+ 1)/2 edges has unit metric length, while for non-simplex elements least squares can

be used to determine the elemental metric. The metric-conforming mesh and mesh-implied

metric offer a way of converting between an anisotropic mesh and a Riemannian metric

field, a so called mesh-metric duality. There are several mesh generators or libraries that

support metric-conforming mesh adaptation/generation, for example the Bi-dimensional

Anisotropic Mesh Generator (BAMG) [159] included in FreeFem 3, the Edge Primitive

Insertion and Collapse (EPIC) [160] developed at Boeing and the Refine [160, 161] devel-

3Available at https://freefem.org.

75

https://freefem.org

oped at NASA 4. A more comprehensive list can be found in [162]. For two dimensional

mesh adaptations considered in this work, we use the BAMG to perform global re-meshing

in each adaptive iteration.

During mesh adaptation, either the desired metric or the metric change with respect to

the current mesh-implied metric is specified at vertices of the current background mesh. If

the latter approach is used, the current elemental mesh-implied metric is first averaged to

vertices before applying the metric changes to get the desired metric at vertices. BAMG

takes the desired metric field and the background mesh as input and then outputs a

mesh that conforms to the desired metric, to some tolerance. An example of the metric-

based global re-meshing is illustrated in Figure 4.5, where BAMG takes in an isotropic

background mesh and generates an anisotropic adapted mesh according to the desired

metric field.

Figure 4.5: An illustration of metric-based global re-meshing in adaptation. The back-
ground isotropic mesh element (black) is shown on the left with the corresponding isotropic
mesh-implied metric field. With the desired anisotropic metric (blue) specified on the
background mesh, BAMG generates a metric-conforming anisotropic mesh, shown on the
right.

4.4.3 Hessian-Based Anisotropy Detection

One dominant approach for detecting the anisotropy is to estimate the directional

interpolation error of the solution [148, 149, 150, 152, 163, 164, 153, 154], where the mesh

is adapted to control a well-defined norm of the interpolation error. More specifically,

the choice of the norm has to be made such that the adaptation will not overly refine

areas where the solution exhibits discontinuities or singularities. However, this approach

is not aware of the output sensitivity with respect to the solution errors, which may be

inefficient for convection dominated flow problems as mentioned in Chapter 3. In this

work, we use an extension of this approach [97, 151] by incorporating the output adaptive

error indicators obtained using Eqn. 4.39.

4Available at github.com/NASA/refine.

76

github.com/NASA/refine

Suppose we have a linear solution profile, i.e., approximation order p = 1, the inter-

polation error of a scalar solution u over an element edge E with unit tangent vector
#„
t

and length h, can be estimated by

δuE ∝
∣∣∣ #„
t
T
H

#„
t
∣∣∣h2, (4.41)

where H ∈ Rd×d is the Hessian matrix of u in d -dimension,

Hi,j =
∂u

∂xi∂xj
, i, j ∈ {1, 2, ..., d}. (4.42)

The second-order derivatives can be estimated by a quadratic reconstruction of the linear

solution. The scalar u used in this work is the Mach number as it has been found to

be generally effective [151, 98], although other scalars or more sophisticated combined

quantities can also be used [148].

A geometric interpretation of Eqn. 4.41 is that the interpolation error along an edge

depends on the squared edge length under the measure of |H|, which is an SPD matrix

defined by taking the absolute value of the solution Hessian. Suppose that the mesh is

conforming to a metric field M, assumed constant along the current edge E. Then the

edge is of unit length under the metric measure by definition,

lM =

√
#„
t
TM #„

t h = 1. (4.43)

Thus the interpolation error can be directly related to the metric field by Eqn. 4.41 and

Eqn. 4.43,

δuE ∝

∣∣∣ #„
t
T
H

#„
t
∣∣∣

#„
t
TM #„

t
. (4.44)

A general principle in mesh adaptation is to equidistribute errors 5, which requires that

#„
t
TM #„

t∣∣∣ #„
t
T
H

#„
t
∣∣∣

= k, (4.45)

where k is a constant defined by the desired equidistributed interpolation error. In order

5On an optimal mesh, the errors should be equidistributed per unit cost, which can be measured by
edge length, element area or system DOF. Since otherwise, the mesh can always be modified by adding
cost in regions where the error per unit cost is high and reducing cost elsewhere, such that the total error
is reduced while the cost is fixed.

77

for Eqn. 4.45 to hold in any principal direction, M can be chosen as

MH = k|H| = kQ|ΛH|QT = QΛMQT . (4.46)

In Eqn. 4.46, Q denotes the orthonormal matrix containing the eigenvectors (principal

directions) of H, while ΛH and ΛM are the diagonal matrices containing the eigenvalues

of the Hessian matrix H and the metric tensor M, respectively. Eqn. 4.46 implies that

the relative shape of the desired metric field and the mesh that conforms to the metric,

λM,i

λM,j

=

∣∣∣∣
λH,i

λH,j

∣∣∣∣ =⇒ hi
hj

=

√
λM,j

λM,i

=

√∣∣∣∣
λH,j

λH,i

∣∣∣∣, (4.47)

where λH and λM represent the eigenvalues of H and M, respectively, i and j index the

principal directions, and hi and hj denote the desired element sizes in the corresponding

directions.

Anisotropy detection based on the standard Hessian matrix is not suited for higher

order approximations, due to the linear solution profile assumption used in the deriva-

tion. Instead, the interpolation error is characterized by the p+ 1st derivatives if order p

approximation is used for the solution, then the first d largest directional derivatives can

be used to determine the principal directions Q and the corresponding stretching ΛH,

i.e., the generalized Hessian matrix H [98, 165]. Consider two principal directions ~ei and

~ej from Q, the error equidistribution yields a mesh stretching as

hi
hj

=

∣∣∣∣
u~ej
u~ei

∣∣∣∣
1/(p+1)

=

∣∣∣∣
λH,j

λH,i

∣∣∣∣
1/(p+1)

=

√
λM,j

λM,i

. (4.48)

In Eqn. 4.48, the metric tensor shape on the direction ~ei is determined by p+1st derivatives

of u along the same direction, u~ei , whose magnitude is characterized by the ith eigenvalues

of the generalized Hessian matrix λH,i; similar notations apply to the principal direction

j. In this work, however, we only consider using the Hessian matrix of second-order

derivatives, regardless of the solution approximation order 6.

Although the relative shape of the metric field is determined by the Hessian matrix,

the absolute size of the metric, controlled by k in Eqn. 4.46 is still of arbitrary choice.

The key idea of Hessian-based mesh adaptation used in this work, which incorporates

output error estimation, is to use Eqn. 4.48 to control the mesh stretching (relative mesh

6For p = 2, the solution Hessian is readily available as a constant matrix, while p < 2, the Hessian
matrix is estimated by a quadratic reconstruction of the solution, and for p > 2, the solution is projected
down to p = 2 for evaluating second order derivatives.

78

size) while using the output error indicator in Eqn. 4.39 to determine the absolute mesh

element sizes.

4.4.3.1 Element Sizing Using A Priori Rate Estimates

In order to perform mesh adaptation, we need to predict the desired element sizes,

or the number of the elements N f in the adapted (fine) mesh. Let ne, not necessary an

integer, be the number of adapted mesh elements contained in element e for the original

mesh. Denoting the current element sizes by hci and the requested element sizes by hfi ,

where i again indexes the principal directions; ne can be approximated as

ne =
d∏

i=1

(hci/h
f
i). (4.49)

The current sizes hci are calculated as the singular values of the mapping from a unit

equilateral triangle to element e. We assume that on the adapted mesh, the output error

is equally distributed in the mesh elements as Ef . We can then relate the growth in the

number of elements to an error reduction factor through an a priori estimate,

neEf = Ece

(
hfref

hcref

)p̄e+1

= Ece

(
d∏

i=1

hfi
hci

)(p̄e+1)/d

, (4.50)

where Ece denotes the current error indicator in element e, p̄e = min(p, γe), and γe is the

lowest order of any singularity within element e. href is the reference element size that

characterizes the convergence, defined in this work as the geometric mean of the edge

lengths along the principal directions. Eqn. 4.49 and Eqn. 4.50 relate ne to the desired

equidistributed elemental error,

neEf = Ece

(
d∏

i=1

hfi
hci

)(p̄e+1)/d

= Ecen−(p̄e+1)/d
e =⇒ n1+(p̄e+1)/d

e =
Ece
Ef . (4.51)

Substituting Eqn. 4.51 into N f =
∑

e ne, we can solve for both Ef and ne if N f is given

and p̄e is assumed equal everywhere in the mesh,

Ef =

(∑
e(Ece)

1
1+(p̄e+1)/d

N f

)1+(p̄e+1)/d

, ne =

(Ece
Ef
) 1

1+(p̄e+1)/d

. (4.52)

79

After obtaining ne, the desired element size hfi can be calculated using Eqn. 4.49 with

current element size information stored in the current mesh-implied metric. In this work,

Hessian-based adaptation is made error-based or cost-based depending on how the total

number of elements N f is specified:

• Cost-based Hessian adaptation: a fixed total cost, i.e., number of elements N f is

given. The mesh element sizes and stretching are updated iteratively to match the

desired metric field.

• Error-based Hessian adaptation: an error tolerance on the output is given as τ .

At each adaptive iteration, the current number of elements N c is increased by a

fixed-growth factor, i.e., N f = f growthN c, until the output error estimate is below

the tolerance, δJ ≤ τ .

4.4.4 Sampling-Based Anisotropy Detection

Goal-oriented Hessian-based anisotropic mesh adaptation has been shown to success-

fully detect solution anisotropy in many applications [97, 151, 98]. However, it relies on

a scalar solution u, which should be carefully chosen to correlate to the specific output of

interest. Also, an inflection in u may lead to inappropriate mesh stretching, and inade-

quate resolution may occur where the magnitude of the Hessian is close to zero. In order

to maximize the approximation potential of a mesh with a given cost, we consider a more

sophisticated h-adaptation method: unstructured mesh optimization via error sampling

and synthesis (MOESS). In MOESS, the mesh adaptation is formulated as an optimization

problem in which the optimal change of the metric field is iteratively determined based

on a prescribed metric-cost model and a sampling-inferred metric-error relationship. This

method was first developed by Yano and Darmofal for the DG discretization [156, 157],

and has been extended to CG [166, 167] and hybridized methods such as hybridized dis-

continous Galerkin (HDG) and embedded discontinuous Galerkin (EDG) [168, 169]. We

briefly review this method and discuss its modifications in this section.

4.4.4.1 Error Convergence Model

In MOESS, the mesh adaptation is formulated as an optimization problem in which

the discrete computational mesh, described by a continuous metric field, is optimized to

minimize the output error. During the optimization process, the optimal changes to the

current mesh-implied metric, M0(~x), is determined iteratively. An affine-invariant [170]

80

change of the metric can be described by a symmetric local step matrix, S ∈ Rd×d,

M = M1/2
0 exp(S)M1/2

0 . (4.53)

where M and M0 denote the modified metric and the current one. Eqn. 4.53 immediately

defines a logarithmic map from the current metric to the modified one

S = log(M−1/2
0 MM−1/2

0). (4.54)

Now the mesh optimization problem can be stated as searching for the optimal changes

of the metric, S(~x), to minimize the total error,

min
S

E =
Ne∑

e=1

Ee(S)

s.t. C =
Ne∑

e=1

Ce(S) = const,

(4.55)

where E and C are the total error indicator and the total cost associated with the mesh,

the subscript e denote the elemental quantities in element e. The main ingredients of

the optimization are the elemental error convergence model Ee(S) and the elemental cost

model Ce(S), which will be discussed in this and the next sections, respectively.

The main problem with heuristic anisotropy detection is that the anisotropy is from

the interpolation error while the element sizes are from output error, which may not

be compatible. Moreover, the a priori rate estimate used in Section 4.4.3.1 assumes a

constant, a priori and isotropic rate of error convergence, which contradicts the idea of

anisotropic adaptation. Therefore, in MOESS, Yano [156] proposed a more generalized

error convergence model which allows anisotropic convergence and is built a posteriori

during the adaptation. Recall the isotropic error convergence used in Eqn. 4.50,

Ee = Ee,0
(
h

h0

)r
= Ee,0 exp

(
r log

(
h

h0

))
, (4.56)

where h/h0 measures the change between current and the new element reference sizes,

and r denotes the a priori isotropic convergence rate. In the metric-based setting, the

element size changes are measured by the local step matrix Se. In addition, a symmetric

rate tensor Re is defined to allow anisotropic directional error convergence. A generalized

model that dictates the error change due to an elemental step matrix Se applied on the

81

current metric Me can then be chosen as

Ee = Ee,0 exp[tr(ReSe)] ⇒ ∂Ee
∂Se

= EeRe. (4.57)

In Eqn. 4.57, the step matrix Se plays the role of the size change as log(h/h0) while the

rate tensor Re replaces the scalar isotropic rate r, when compared to Eqn. 4.56. The

rate tensor Re is difficult to determine a priori, and in practice it is inferred through

a sampling approach separately for each element, i.e., the anisotropy is determined a

posteriori through sampling.

4.4.4.2 Local Error Sampling

The generalized anisotropic error model in Eqn. 4.57 relies on the local error conver-

gence rate tensor, Re, which has d(d + 1)/2 unknowns. In order to estimate the rate

tensor, Yano [156] proposed a sampling approach, in which several predefined refinement

options are sampled to detect the anisotropic error convergence properties. For a tri-

angular element used in this work, four refinement options are considered as shown in

Figure 4.6. For each refinement option i, we can determine the corresponding step matrix

Se,i with respect to the original configuration using Eqn. 4.54. In order to estimate the

rate tensor, we would like to know how the error changes under each refinement option

i, i.e., each step matrix Se,i. One expensive option is to refine the element with the pro-

posed cut, re-solve the primal and fine-space adjoint problems globally, and re-compute

the error estimate. Though accurate, this would be impractically expensive. Another

option is to only solve the primal/adjoint problems on a subset of the original mesh: the

current element and its neighbors. This approach, taken in the original MOESS algo-

rithm, is less accurate but still performs very well as globally-exact primal/adjoint states

are not necessary to estimate the error rate tensor. In this work we further simplify the

estimation by not solving additional primal/adjoint problems, even on a local patch of

elements. Instead, we use an element-local projection method [171] to approximate the

fine-space adjoint in semi-refined spaces associated with each refinement option.

Consider one element Ωe in the current mesh, shown as the original configuration in

Figure 4.6. The fine space adjoint, Ψh,e, provides an estimate of the output error in the

current order p solution, as measured relative to the p+ 1 solution, denoted as Ee,0. Now,

suppose that we are looking at refinement option i in Figure 4.6: this local refinement

creates a solution space that is finer than the original one, which is called a semi-refined

space, although we assume that the semi-refined spaces considered are not as fine as the

order p + 1 space. If we have an order p adjoint on this semi-refined space, ΨH,i, where

82

Original Option 4Option 3Option 2Option 1

Figure 4.6: Four refinement options for a triangle. Each one is considered implicitly
during error sampling, though the elements are never actually refined.

H is the order p space and i indicates that we are considering refinement option i, we can

compute an error indicator ∆Ee,i, which estimates the error between the original coarse

space and the ith semi-refined space. The remaining error associated with refinement

option i is then given by the difference,

Ee,i ≡ Ee,0 −∆Ee,i. (4.58)

In other words, we treat the order p+ 1 space as the “true space”, ∆Ee,i is the error that

is not covered on the semi-refined space when measured relative to the “true space”.

Calculating ∆Ee,i requires an adjoint-weighted residual evaluation on the element re-

fined under option i. To avoid actually refine the element, we project ΨH,i back into the

p + 1 space on the original element and evaluate the adjoint weighted residual there 7.

The error estimate can be written as

∆Ee,i ≡ (ΨH,i
h,e)TRh,e(U

H
h), (4.59)

where ΨH,i
h is the order p adjoint solution ΨH,i, projected from the ith semi-refined space

into order p+ 1 space on the original configuration. Finally, instead of solving the adjoint

on the semi-refined space, as we never refine the element anyway, we project the order p+1

adjoint solution on the original configuration to order p under the refinement option i as a

surrogate of ΨH,i. This projection causes information loss as the semi-refined space is not

as rich as the “true space” (order p+ 1 space on the original configuration), while it gives

the best possible adjoint (closest to the adjoint on the “true space”) on the semi-refined

space and produces the uncovered error ∆Ee,i.
In summary, the error uncovered by refinement option i, ∆Ee,i, is estimated by the

adjoint-weighted residual in Eqn. 4.59, with all calculations occurring at order p + 1 on

the original element. Using least-squares projections in reference space, the combination

7Again, we assume the order p + 1 space on the original configuration is finer/richer than the semi-
refined order p space, so the projection is loss-less and is able to recover the error estimate.

83

of projections can be encapsulated into one transfer matrix that converts Ψh into ΨH,i
h ,

both represented in the order p+ 1 space on the original element:

ΨH,i
h = TiΨh,

Ti =
[
M0(φp+1

0 , φp+1
0)

]−1
ni∑

k=1

Tik,

Tik = Mk(φ
p+1
0 , φpk) [Mk(φ

p
k, φ

p
k)]
−1 Mk(φ

p
k, φ

p+1
k)

[
Mk(φ

p+1
k , φp+1

k)
]−1

Mk(φ
p+1
k , φp+1

0).

(4.60)

In these equations, ni is the number of sub-elements in refinement option i, k is an index

over these sub-elements, φpk, φ
p+1
k are order p and p+ 1 basis functions on sub-element k,

φp0, φ
p+1
0 are order p and p+ 1 basis functions on the original element, and components of

the mass-like matrices are defined as

Mk(φl, φm) =

∫

Ωk

φlφmdΩ, M0(φl, φm) =

∫

Ω0

φlφmdΩ, (4.61)

where Ωk is sub-element k and Ω0 is the original element. Note that the transfer matrix

Ti can be calculated for each refinement option i once in reference space and then used

for all elements, so that the calculation of ∆Ee,i consumes minimal additional cost – and

most importantly, no solves or residual evaluations are needed on the refined element, as

these generally require cumbersome data management and transfer.

After calculating the element error indicators, Ee,0, and the errors remaining after each

refinement option i, Ee,i, according to Eqn. 4.58, we perform a regression to determine the

local rate tensor, Re. Note that we have 4 refinement options and only 3 independent

entries in the symmetric Re tensor. Using Eqn. 4.57, we formulate the regression task

as a least-square problem which minimizes the following error, summed over refinement

options,

Re = arg min
Q

∑

i

[
log
Ee,i
Ee,0
− tr(QSe,i)

]2

. (4.62)

In this equation, Se,i is the step matrix associated with refinement option i, given by

(from Eqn. 4.54),

Se,i = log
(
M−1/2

0 MiM−1/2
0

)
, (4.63)

where Mi is the affine-invariant metric average [170] of the mesh-implied metrics of

all sub-elements in refinement option i. Differentiating Eqn. 4.62 with respect to the

independent components of Re yields a linear system for these components, i.e., the

normal equations for the least-square problem.

84

4.4.4.3 Cost Model

To measure the cost of refinement, we use degrees of freedom (DOF), which on each

element just depends on the approximation order pe, assumed in this work as constant and

equal to p over the elements. The formula for calculating the cost associated with element

Ωe is given in Section 2.4.3. Consider a proposed metric step matrix Se applied on current

metric Me,0, the cost allocation for the new configuration is inversely proportional to the

element area, which can be inferred from the metric change as,

Ce = Ce,0
√

det(Me)

det(Me,0)
= Ce,0

√
det(M1/2

e,0 exp(Se)M1/2
e,0)

det(Me,0)

= Ce,0
√

det(exp(Se)) = Ce,0 exp

[
1

2
tr(Se)

]

⇒ ∂Ce
∂Se

= Ce
1

2
I,

(4.64)

where Ce is the expected cost over the original element area after applying Se to the

original metric Me,0, and I is the identity matrix. The total cost over the mesh is the

sum of the elemental costs over the mesh, C =
∑Ne

e=1 Ce.

4.4.4.4 Mesh Optimization Algorithm

Given a current mesh with its mesh-implied metric (M0(~x)), elemental error indica-

tors Ee,0, and elemental rate tensor estimates, Re, the mesh optimization problem is to

determine the optimal step matrix field, S(~x), that minimizes the error at a fixed cost,

min
Sv

E =
Ne∑

i=1

Ee(Sv)

s.t. C =
Ne∑

i=1

Ce(Sv) = const.

(4.65)

where the step matrix field is parametrized at mesh vertices as Sv
8, which are arithmetically-

averaged to adjacent elements9:

Se =
1

|Ve|
∑

v∈Ve

Sv, (4.66)

8A node-based step matrix is used since BAMG accepts a node-based metric Mv as input.
9There is no need for an affine-invariant average because entries of S are coordinate system indepen-

dent.

85

where Ve is the set of vertices (|Ve| is the number of them) adjacent to element e.

The first order optimality condition requires

∂E
∂Sv

+ λv
∂C
∂Sv

= 0, (4.67)

where λv is the Lagrange multiplier associated with the fixed cost constraint. The error

and cost derivatives in Eqn. 4.67 can be obtained by applying chain rules on Eqn. 4.57

and Eqn. 4.64 with Eqn. 4.66,

∂E
∂Sv

=
∑

e∈Ev

∂Ee
∂Se

∂Se

∂Sv

,
∂C
∂Sv

=
∑

e∈Ev

∂Ce
∂Se

∂Se

∂Sv

(4.68)

where Ev is the set of elements sharing the vertex v. We further notice that the cost only

depends on the trace of the step matrix, in other words, the trace-free part of Se only

stretches the element but does not alter the area. On the other hand, both the trace and

trace-free part of Se affect the error due to anisotropic convergence. Thus the step matrix

can be divided into trace and trace-free parts as

Sv = svI︸︷︷︸
trace

+ S̃v︸︷︷︸
trace-free

, sv =
tr(Sv)

d
. (4.69)

Then the derivatives shown in Eqn. 4.68 can be broken down into

∂E
∂sv

= tr

(
∂E
∂Sv

)
,

∂E
∂S̃v

=
∂E
∂Sv

− ∂E
∂sv

I
d

; (4.70)

∂C
∂sv

=
∂C
∂Sv

,
∂C
∂S̃v

= 0. (4.71)

Meanwhile, the optimality condition in Eqn. 4.67 can be rewritten accordingly

∂E
∂sv

+ λv
∂C
∂sv

= 0,

∂E
∂S̃v

= 0.
(4.72)

We do not solve above system exactly, since it would be a very high-dimensional prob-

lem which may require extremely high computational effort, especially in an optimization

problem where the optimal mesh changes as the design varies. Furthermore, the error

model based on the empirical local sampling may not represent the error exactly. There-

fore, solving the mesh optimization problem exactly is inefficient and unnecessary. Instead,

86

we follow the approach proposed by Yano [156] where the optimization is done locally,

which converges to a solution of the original optimization problem. The optimization

algorithm is summarized as follows:

1. Given a mesh, solution, and adjoint, calculate Ee, Ce,Re for each element e.

2. Set δs = δsmax/nstep, Sv = 0.

3. Begin loop: i = 1 . . . nstep

(a) Calculate Se from (4.66), ∂Ee
∂Se from (4.57), and ∂Ce

∂Se from (4.64).

(b) Calculate derivatives of E and C with respect to sv and S̃v.

(c) At each vertex form the ratio λv = ∂E/∂sv
∂C/∂sv and

• Refine the metric for 30% of the vertices with the largest |λv|: Sv =

Sv + δsI
• Coarsen the metric for 30% of the vertices with the smallest |λv|: Sv =

Sv − δsI
(d) Update the trace-free part of Sv to enforce stationarity with respect to shape

changes at fixed area: Sv = Sv − δs(∂E/∂S̃v)/(|∂E/∂sv|).
(e) Rescale Sv → Sv + βI, where β is a global constant calculated from (4.64) to

constrain the total cost to the desired DOF value: β = 2
d

log Ctarget

C , where Ctarget

is the target cost.

Note, λv is a Lagrange multiplier in the optimization, which can be interpreted as

the ratio of the marginal error to marginal cost of a step matrix trace increase (i.e.,

mesh refinement). The above algorithm iteratively equidistributes λv globally so that, at

optimum, all elements have the same marginal error to cost ratio. Constant values that

work generally well in the above algorithm are nstep = 20 and δsmax = 2 log 2. In practice,

the mesh optimization and flow/adjoint solution are performed several times at a given

target cost, Ctarget, until the error stops changing. Then the target cost is increased to

reduce the error further if desired.

87

CHAPTER 5

Aerodynamic Optimization Framework with

Adaptive CFD

As mentioned earlier in Chapter 1, the optimization framework relies on an effective

integration of several components, including the geometry parameterization, mesh de-

formation, numerical optimization algorithm, CFD flow solver, sensitivity analysis and

also in this work the error estimation and mesh adaptation component. The last three

components have been discussed in detail in Chapter 2–4, and the remaining parts will

be covered in the current chapter. We first introduce in Section 5.1 the problem of inter-

est: two-dimensional airfoil shape optimization, in which the geometry parameterization

method is also presented. Section 5.2 focuses on the mesh deformation techniques used in

this work. Section 5.3 starts with a description of the gradient-based optimizer adopted,

followed by which detailed discussions are given on the effective integration of the tradi-

tional gradient-based optimization with an adaptive CFD framework.

5.1 Two-Dimensional Airfoil Optimization

5.1.1 Problem Statement

For demonstration, two-dimensional airfoil shape optimizations are considered in this

work. In particular, the problem studied here is to search for an optimal design, including

the airfoil shape and the angle of attack to minimize the drag subject to a fixed lift

constraint and a minimum airfoil area. The optimization problem can be formulated as

min
x

cd(U,x)

subject to: Re = c`(U,x)− c̄` = 0,

Rie = A(x)− Amin ≥ 0,

(5.1)

88

where cd is the optimization objective, c` and c̄` denote the current and the target lift

coefficients, A and Amin represent the current and minimum allowable areas of the airfoil;

x is the design parameter vector and U is the conservative state vector of the governing

PDEs. The objective output, i.e., cd, and the constraint output, i.e., c`, depend on both

the design x and the flow states U, while the airfoil area is solely determined by the design

parameters x. Following the notation in Chapter 4, we denote the drag coefficient cd as

the adapt output and the lift coefficient c` as the trim output. The inequality volume

constraint, independent of the flow states, is assumed to be measured exactly and handled

by the optimizer as normal inequality constraints.

The design variables considered are the angle of attack α, and the airfoil shape pa-

rameterized by a discrete shape vector xs, x = [α,xs]. When the trim condition (fixed-lift

constraint) is enforced by the optimizer, i.e., in the OBT approach, the whole design

vector is updated through the optimizer during the optimization; On the other hand, if

SBT is used, the angle of attack α serves as a trim variable xt to satisfy the trim condition

and only the active design xs is available for the optimizer in the optimization.

5.1.2 Geometry Parametrization

The airfoil shape is parameterized using the deformation method proposed by Hicks

and Henne [28], in which the deformation of airfoil instead of the geometry itself is pa-

rameterized. The geometry change is parameterized by a set of “bump” functions, also

referred to as Hicks-Henne basis functions, such that a new airfoil shape is defined by

adding a linear combination of the Hicks-Henne basis functions to its original baseline

shape,

z(x) = zbase(x) +
Ns∑

i=1

aiφi(x), (5.2)

where x denotes the position along the airfoil chord, and z and zbase represent the upper

or lower surface vertical coordinates of the new airfoil and the original one. The upper

and lower surfaces are considered separately in Eqn. 5.2, i.e., independent design variables

are used for the upper and the lower surfaces. The summation term in Eqn. 5.2 is a linear

combination of the Hicks-Henne basis φi(x) with different coefficients ai, which constitute

the design parameters along with the angle of attack, x = [α, a1, a2, ..., aNs]
T . One widely

used basis set is the sine functions [52],

φi(x) = sinti(πxmi), mi =
ln(0.5)

ln(xMi
)
, (5.3)

89

where xMi
is the predefined location of the maxima for each basis function and ti controls

the width of the bump function. We adopt an optimized basis set [172] where

ti = 4, xMi
=

1

2

[
1− cos

(
iπ

n+ 1

)]
, i = 1, 2, ..., n. (5.4)

5.1.3 Angle of Attack Handling

In most flow simulations, the angle of attack comes into the system as a parameter

determining the boundary condition, more specifically the free-stream flow angles. In the

present work, however, we will focus on possibly separate angles of attack for multiple

components. To allow relative angle changes between different components, the angle of

attack variations are implemented through a mesh motion strategy based on the Arbi-

trary Lagrangian Eulerian (ALE) formulation [173, 174]. The idea of ALE is to map the

original governing PDE on a deforming physical domain to a modified PDE on a static

reference domain. In other words, the original problem on the physical domain involves

relative mesh motions/deformations, which can be viewed as a modified PDE on the un-

deformed reference domain. Although the mesh motion can also be achieved by standard

mesh deformation techniques which will be covered in Section 5.2, the ALE framework

provides a relatively easier treatment for boundary conditions and is more flexible when

multiple geometry components are involved. However, the ALE method requires an an-

alytically defined mapping between the reference and physical domains, thus analytical

mesh motions/deformations, such as flow angle variations, are often preferred. On the

other hand, the airfoil geometry modification, which is more local and nonlinear, is still

managed by standard mesh deformation techniques in the current work.

In the ALE formulation, the angle of attack is applied as a parameter, and the sensitiv-

ity can be obtained using standard adjoint method as mentioned in Chapter 3. Depending

on how the trimming condition is enforced, the sensitivities are used by the optimizer or

the flow solver to satisfy the trimming equations.

5.2 Mesh Deformation

At each iteration in the optimization, the objective output and the constraint outputs

need to be re-evaluated on the updated geometry, which in turn requires an updated com-

putational mesh that conforms to the geometry. Regeneration of a mesh especially for

a complex geometry or with high resolution, could be time-consuming and non-trivial 1.

1Although in a mesh adaptation setting, the adapted meshes are obtained from global re-meshing, a
valid mesh is still required on the updated geometry first, such that the adaptation itself is much cheaper

90

And more importantly, the mesh topology or structure changes may be inconsistent with

the sensitivity obtained on the original mesh, see Section 5.3.3 for details. Therefore,

an efficient way to update the computational mesh is needed. In this work, two mesh

deformation techniques are used to propagate the airfoil boundary deformation into in-

terior mesh nodes: one is based on an explicit inverse distance weighting (IDW) inter-

polation scheme [175], and the other is based on radial basis function (RBF) interpola-

tion [176, 177]. The former approach is explicit and easy to implement, which is used

for inviscid flow meshes in this work; while the latter approach often results in a higher-

quality mesh, at higher cost, and is applied in viscous simulations such that the near-wall

mesh quality is better-preserved.

5.2.1 Inverse Distance Weighting Interpolation

The deformation of the computational mesh can be viewed as a projection of deforma-

tions and rotations from the boundary surface into the interior mesh nodes. Assume mesh

displacement fields are prescribed separately at each boundary node, and that the effects

on the interior nodes depend inversely on the distance to the corresponding boundary

node. Then at each interior mesh node, the displacement can be estimated by summing

over the effects of displacement fields prescribed at each boundary node.

For general mesh deformations, we can decompose the displacement into rotation and

translation. Once the displacement on a given boundary node is determined, we can

estimate the prescribed displacement field as

~di(~x) = Mi~x+ ~ti − ~x, (5.5)

where Mi is the rotation matrix, ~ti is the translation vector associated with the ith bound-

ary node, ~x is the coordinate vector of an arbitrary node in the original mesh. The rotation

matrix is determined by the local normal vector rotation. In practice, it is estimated by

finding the closest rotation matrix that best matches the rotation of adjacent edges on

the boundary nodes. Once the rotation matrix is determined, the translation field ~ti can

be easily computed given the displacement at the ith boundary node.

The displacement field on any interior mesh nodes can then be approximated through

a weighted average of all boundary node displacement fields,

~d(~x) =

∑Nb
i=1 wi(~x)~di(~x)∑Nb

i=1wi(~x)
, (5.6)

than generating a high-quality mesh.

91

where Nb is the number of the boundary nodes and wi is the weight function, which

depends inversely on the distance to the ith boundary node. We adopt the two-exponent

form of the weighting function proposed by Luke et al. [175], which preserves the near-

boundary deformations while providing a smooth transition in the interpolation. The

weight also includes the areas of adjacent faces such that mesh refinements of a specific

region will not increase its influence in the interpolation. The resulting weighting function

can be written as

wi(~x) = Ai ∗
[(

Ldef

‖~x− ~xi‖

)a
+

(
αLdef

~x− ~xi

)b]
, (5.7)

where Ai is the edge length weight or the face area weight assigned to node i, Ldef is the

estimated length of the deformation region, α defines the size of the near body influence

region as a fraction of Ldef, and a and b are user-defined exponents controlling the decay

of the weights. We take the values suggested in [175] that a = 3 and b = 5, and Ldef

as the maximum distance from any mesh node to the origin. The parameter α controls

the relative effects of nearby boundary nodes compared to more distant ones. In general,

this factor should increase if the surface displacement variation on different nodes is large.

Thus we can determine α by estimating the deviation of the boundary node displacement

from the mean boundary displacement ~dmean,

α =
η

Ldef

Nb
max
i=1
‖~di(~xi)− ~dmean‖, (5.8)

where η is a scaling factor which takes a value of η = 5 as suggested by numerical

experiments [175], ~dmean is the mean boundary displacement defined as

~dmean =

Nb∑

i=1

ai~di(~xi), ai =
Ai∑Nb
j=1Aj

. (5.9)

In practice, α is limited to be greater or equal to 0.1 to guarantee rigid deformation near

the boundary for better viscous mesh quality. The current implementation closely follows

the method presented in [175] and the IDWarp 2 package.

5.2.2 Radial Basis Function Interpolation

A radial basis function (RBF) is a real valued function that only depends on the

distance from the origin, or some specified center points, ~c, such that φ(~x) = φ(‖~x‖) or

φ(~x) = φ(‖~x−~c‖). Assume that we are given the displacements db = [~db,1, ~db,2, ..., ~db,Nb] of

2Available at https://github.com/mdolab/idwarp.

92

https://github.com/mdolab/idwarp

the Nb airfoil boundary nodes xb = [~xb,1, ~xb,2, ..., ~xb,Nb], which are the center points in the

RBF interpolation. Then we can use the sum of the RBFs and a polynomial to interpolate

the original displacement function,

~d(~x) =

Nb∑

i=1

~riφi(‖~x− ~xb,i‖) + ~p(~x), (5.10)

where ~ri is the coefficient for the ith RBF, and ~p(~x) is an order p polynomial. The

coefficients ~ri and the polynomial ~p are determined by the interpolation conditions

~d(~xb,i) = ~db,i ∀~xb,i ∈ xb, (5.11)

and the additional requirements to recover any polynomial q(~x) with an order less than

or equal to order p,
Nb∑

i=1

~ri q(~xb,i) = 0. (5.12)

Eqn. 5.11 and Eqn. 5.12 lead to a linear system whose size is O(Nb), which is small

compared to the number of nodes in the entire mesh. Moreover, the connectivity of the

mesh is not required for the RBF interpolation. By constructing the interpolation, we

can easily propagate the mesh deformation from the boundary to any interior mesh nodes

through Eqn. 5.10. More implementation details can be found in the previous work of

Jakobsson and Amoignon [176] and de Boer et al. [177].

5.3 Optimization Algorithm

5.3.1 Gradient-Based Optimizer

Although the optimization problem is formulated in an augmented Lagrangian form

in Chapter 4, any gradient-based optimization algorithm can be used if the trimming

condition is handled by the flow solver, since the Lagrange multiplier associated with

the trimming constraints, i.e., the coupled adjoint µ, are obtained during the trimming

process. However, if the trimming constraints are handled by the optimizer, then an

optimization algorithm that involves Lagrange multipliers should be used in order to

provide them for error estimation and mesh adaptation purposes [67].

In this work, we use the Sequential Least Squares Programming (SLSQP) [178, 179]

algorithm which is originally written in Fortran as a module for optimal control calcula-

93

tions 3. It can be used to solve general nonlinear programming (NLP) problems,

NLP: min
x
f(x)

subject to: gj(x) = 0, j = 1, ...,me

gj(x) ≥ 0, j = me + 1, ...,m,

xl ≤ x ≤ xu.

(5.13)

We follow the notation that is generally used by the optimization community in Eqn. 5.13,

where x stands for the design variables with lower and upper bounds denoted as xl and

xu, f(x) and g(x) are the objective and constraints respectively, me and m denote the

dimension of equality constraints and the total number of the constraints. One of the

most efficient methods of solving the NLP problem is the sequential quadratic program-

ming (SQP), in which the original problem is sequentially approximated as a quadratic

programming (QP) problem. First, we write the original minimization problem in a La-

grangian form,

L(x,µ) = f(x) +
m∑

j=1

µjgj(x), (5.14)

where µ ∈ Rm is the Lagrange multipliers whose first me entries are associated with the

equality constraints while the rest of them are for the inequality constraints. The SQP

method sequentially minimize a QP subproblem which uses a quadratic approximation of

the Lagrangian function while a linear approximation of the constraints,

QP: min
d
f(xk) +∇f(xk)d +

1

2
dTBkd,

subject to: ∇gj(xk)d + gj(x
k) = 0, j = 1, ...,me,

∇gj(xk)d + gj(x
k) ≥ 0, j = me + 1, ...,m.

(5.15)

where the B matrix is the Hessian of the Lagrangian function, B ≡ ∇2
xxL(x,µ).

Instead of directly approximating the Hessian matrix B by taking second-order deriva-

tives, SLSQP adopts a quasi-Newton type method where the B matrix is approximated

using only first-order information. Particularly, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS)-type formula is used for updating the B matrix sequentially along with the QP

problem. In the implementation, the QP subproblem is replaced by a least squares with

equality and inequality constraints (LSEI) problem, using the Cholesky decomposition of

3Available as the original Fortran code at http://www.netlib.org/toms/733 or wrapped in the
optimization module in the SciPy library at https://www.scipy.org.

94

http://www.netlib.org/toms/733
https://www.scipy.org

the Hessian, B = LDLT ,

LSEI : min
d
‖(Dk)1/2(Lk)Td + (Dk)−1/2(Lk)−1∇f(xk)‖

subject to: ∇gj(xk)d + gj(x
k) = 0, j = 1, ...,me,

∇gj(xk)d + gj(x
k) ≥ 0, j = me + 1, ...,m;

(5.16)

where the superscript k denotes the iteration number. The above least squares problem is

solved by a slightly modified version of the least squares solver of Lawson and Hanson [180].

When the solution is far from optimal, the LSEI problem only gives a descent direction,

which should be incorporated with a line search algorithm to ensure sufficient decrease of

the objective function in each QP problem. A back-tracking line search, which originates

from Brent’s localmin algorithm [181], is used.

Due to the equivalence of solving the QP subproblem in Eqn. 5.15 and the LSEI

subproblem in Eqn. 5.16, SLSQP is sometimes interpreted as Sequential Least Squares

Quadratic Programming. In our implementation, the original SLSQP Fortran code is

wrapped in C functions, and if the trim constraints are handled by the optimizer, the

coupled adjoint µ is directly extracted from the optimizer for error estimation and mesh

adaptation use.

5.3.2 Incorporation with Output Error Estimation and Mesh Adaptation

In traditional aerodynamic optimization, a single fixed mesh is often used. Thus if

high accuracy is required, a fine discretization, such as a high order discretization or a

fine computational mesh or both, has to be chosen. As mentioned in Chapter 1, this high-

fidelity requirement poses several challenges in the optimization. First of all, generating

a high-fidelity computational mesh is by no means a trivial task, especially for complex

geometries or unconventional configurations in which limited experience or knowledge is

available. The overhead added by mesh generation will significantly slow down the opti-

mization setup and can thus be the bottleneck of the design automation. In addition, the

starting mesh is generated based on the initial design, with no guarantee to remain ade-

quate throughout the entire optimization process. Secondly, the quality of the design and

the numerical errors are typically only investigated via mesh convergence study for the

initial and the final designs, before and after the optimization, which can potentially lead

to inaccurate or spurious optima during the design process. Finally, the computational

burden associated with high-fidelity meshes often makes high-dimensional optimization

problems computationally taxing. In this section, we will tackle these problems by incor-

porating the output error estimation and mesh adaptation within aerodynamic optimiza-

95

tion problems to improve the automaticity, reliability and efficiency of the optimization.

In order to aid practical aerodynamic design and to reduce the optimization cost,

automated adapted meshes are introduced into the design process. The designer only

needs to provide a relatively coarse background mesh, which is much easier to generate, to

start the optimization run. Then, the computational mesh is adapted in necessary regions

based on the output error estimates, with active control of numerical errors during the

optimization. Output error estimates in this case not only guides the mesh adaptation,

but also provides a way to quantify the uncertainty of the design due to numerical errors,

i.e., assess the quality of the design on the fly rather than after the optimization. The

sensitivity calculation requires the output adjoint on the current mesh (coarse space),

while the error estimation needs the adjoint solution on the enriched space (p + 1 fine

space). However, the coarse space adjoint is often injected to the fine space to provide a

good initial guess for the fine space adjoint solution. Therefore, the error estimation can

reuse the adjoint solution obtained in the sensitivity analysis, making the incorporation

more efficient.

A multifidelity optimization framework is built into the proposed method, taking

advantage of the variable fidelity offered by adaptive meshes. Although different levels of

a priori meshes can also be used to enable multifidelity optimization, the mesh generation

and optimization setup in such a scenario rely more on users’ experience to exploit the

benefits of various fidelity levels. Despite the difficulties in generating good meshes for

each fidelity, the uncertainty due to discretization errors is not quantified at each fidelity in

traditional optimization. As a result, the optimization tolerance in each fidelity is either

always set to be the ultimate optimization tolerance, or varied purely based on users’

experience or intuition, which may degenerate the potential benefits of variable fidelity.

For example, on the one hand, if the optimization tolerance at low fidelities is set to be

too high, the optimizer will not be able to fully exploit the current fidelity to improve the

design. In this case, the current mesh is unnecessarily fine for the prescribed optimization

tolerance, which we will call “over-refinement” in this work. On the other hand, however,

if the optimization tolerance is set too tightly at low fidelities, the optimizer may work

on numerical errors instead of physics to improve the design, i.e., the optimizer is over-

optimizing with inaccurate information. In consequence, the optimization on the high

fidelity has to do extra work for undoing these incorrect design modifications to bring

the design back to physically optimal. By incorporating the output error estimation and

mesh adaptation, a better balance of the solution accuracy and the optimization tolerance

can be achieved.

Two possible ways to incorporate the mesh adaptation and design optimization are

96

considered here: optimization-driven adaptation and adaptation-driven optimization. In

the former approach, the optimization tolerance at each fidelity is prescribed by the user.

The objective function is first evaluated on a relatively coarse mesh, and then the error

estimation and mesh adaptation are performed to control the discretization error to be

below the optimization tolerance at the current fidelity. The allowable discretization

error decreases as the optimization fidelity increases. For the latter approach, several

mesh levels, i.e., DOF, are defined before the optimization. Again, we start with a fairly

coarse mesh, and then the mesh is adapted/optimized for each design, subject to the given

DOF level, to achieve the best accuracy. Once the objective change or the gradient norm is

smaller than the objective error estimate, the optimization terminates at the current cost

level and the fidelity increases through mesh adaptation with a higher cost. Depending on

the information specified at the optimization setup, we therefore refer to the optimization-

driven adaptation as the error-based approach, while we denote the adaptation-driven

optimization as the cost-based approach. The error-based optimization needs an error-

based mesh adaptation method: here we use error-based Hessian adaptation 4; while the

cost-based one requires cost-based adaptation mechanics, which can be either cost-based

Hessian adaptation or MOESS. More details about the adaptation mechanics can be found

in Chapter 4.

Compared with the fixed-fidelity optimization, unnecessarily fine meshes at the early

stages of the shape optimization are avoided in the two proposed multifidelity frameworks.

Moreover, the areas that introduce most of the error may differ a lot for different designs

during the optimization. Both approaches reduce the chance of over-refining areas that

are not relatively important for the final design, which is important for problems where

the initial and final designs are significantly different. Compared with the multifidelity

optimization without error estimation and mesh adaptation, the optimization tolerance

and the error estimate are tightly coupled in the proposed method to actively control the

optimization at each fidelity and avoid the waste of low-fidelity convergence. Therefore,

we expect that the two proposed methods can effectively prevent over-optimizing on a

coarse mesh, or over-refining on an unintended design.

5.3.3 Consistent Objective-Sensitivity Analysis

One should note that in the proposed frameworks, even at the same fidelity, the mesh is

not necessarily fixed as in the traditional design method. Rather, the mesh is also adapted

4MOESS can also be made error-based, however, the optimal step matrix tensor field is determined
iteratively with a fixed cost as MOESS is formulated, making the error-based approach expensive and
inefficient due to the cost changes during the adaptation. Therefore, only the cost-based adaptation
strategy is considered for MOESS in this work.

97

if needed, e.g., refined in the error-based approach or optimized in the cost-based one,

to control the discretization error. Recall the discrete optimization problem in Eqn. 4.6,

omitting the additional constraints for simplicity,

min
x

Jh(Uh(x),x)

s.t. Rh(Uh(x),x) = 0
(5.17)

The above problem formulation infers a dependence on the discretization h, i.e., the com-

putational mesh if the order is fixed. One could prove that by refining the discretization,

the discrete optimization problem converges to the continuous one. However, it should

also be mentioned that, the discrete optimization is an independent problem, which is

characterized by the behavior of both the continuous problem and the discretization in-

duced error,

Jh(uh,x) = J (u,x) + eh(u− uh,x) ⇒ dJh
dx

=
dJ
dx

+
deh
dx

, (5.18)

where eh is the exact discretization error of the output, assumed to be continuous with

respect to the design variable x.

In general, the discretized objective is incorrect compared to the exact continuous ob-

jective due to the numerical error induced by discretization. Consequently, the discretized

objective gradient also involves the gradient of the error, which is unique in different dis-

cretizations. If the mesh is not adapted, then the numerical error may lead to a substantial

deviation of the objective. Indeed, even if the mesh is adapted, but only on the objec-

tive and not its gradient, convergence to the true optimum of the continuous optimization

problem may be hampered due to inaccuracy of the gradient approximation [66]. However

luckily, the discretization error does not affect the convergence of the discrete optimization

problem, since the discretized gradient analysis is consistent with the discretized objec-

tive function. In fact, if exact differentiation is used in Eqn. 5.18, e.g., using algorithmic

differentiation, one obtains the exact gradient of the discretized objective functional. Due

to the consideration above, controlling the error of the sensitivity seems to be of lim-

ited importance for the optimization process. However, objective sensitivity is commonly

used in the stopping criterion for the optimization problem, controlling the sensitivity

error helps ensure the optimality condition. Hicken and Alonso [66] proposed a method

to estimate the error of the output gradient norm. However, high-order derivatives need

to be approximated and the computational cost is higher than output error estimation.

Moreover, there exit scenarios where the gradient is more accurate than the output value

98

itself, i.e., incremental output predictions are less computationally intensive than abso-

lute output predictions as suggested in [63]. In these cases, only controlling the gradient

errors may yield accurate designs, however, the final output values may not be accurate

enough for practical use. In addition, apart from the optimality, the trim constraints also

rely much on accurate absolute output computations to determine the design feasibility.

Therefore, in this work we focus on controlling the error in the output predictions instead

of the errors in the sensitivity calculations.

The proposed multifidelity optimization methods approximate the continuous opti-

mization by generating a sequence of designs and discretizations, which converges to the

optimal design of the continuous optimization problem,

{Jh} = {Jh0(x0), Jh1(x1), ..., JhN (xN)}, lim
hN→0

|JhN (xN)− J (x∗)| = 0. (5.19)

The convergence can be guaranteed by the error estimation given in Eqn. 4.36 if the

optimization problem is smooth and convex. However, in a gradient-based optimization,

a feasible path has to exist along these design and mesh pairs for successful convergence.

In the proposed frameworks, inconsistent objective-sensitivity analysis may occur since

the discretized optimization problem changes every time the mesh is adapted. Although

all of the discretized problems (discrete optimizations) are approximations to the same

continuous optimization problem, each of them has its own behavior associated with the

embedded discretization error. There may not exist a feasible gradient-based update

path between two design and discretization pairs, since the gradient depends on the

discretization and hence cannot guide the update between different discretizations. This

can lead to convergence issues, similar to optimization that utilizes the continuous adjoint

for sensitivity analysis. Therefore, for the sake of consistent objective-gradient analysis,

we update the design on the same mesh, and then perform mesh adaptation if needed. In

other words, after obtaining the objective gradient on the current mesh, the line search

is performed on the same mesh, and, when necessary, adaptation is only applied after

the design update in each major iteration. From the point of view of the optimizer, each

QP or LSEI subproblem is solved on the same mesh, while they are sequentially built on

different adapted meshes. This approach yields a sequence of designs and discretizations

that avoids possible convergence difficulties,

{Jh} = {Jh0(x0), Jh0(x1), Jh1(x1), ..., JhN−1
(xN), JhN (xN)}, lim

hN→0
|JhN (xN)−J (x∗)| = 0.

(5.20)

99

5.3.4 Multifidelity Optimization Algorithm Overviews

The proposed optimization frameworks with error estimation and mesh adaptation

are summarized in Algorithm 5.1 and Algorithm 5.2, using error-based and cost-based

approaches, respectively 5. Optimization tolerance levels and cost levels are specified

by the user, driving the mesh adaptation to actively control the numerical errors. The

general idea of the algorithms is to use the information from the flow solution only to

its accuracy limit by setting the optimization tolerance to the discretization error or

controlling the error to be below the optimization tolerance. In this work, we assume

that the error estimation is sufficiently accurate to represent the “true” numerical error,

which may be inappropriate when the adjoint is not well-resolved or when the problem is

highly nonlinear. On the other hand, there exist cases in practice when the low fidelity

meshes are able to predict incremental objective differences more accurately than absolute

objective values as discussed earlier. In other words, the objective functional shape with

respect to the design parameters are well-predicted while the absolute output values are

off. Therefore in the proposed optimization frameworks, a safety factor η is defined to

control reliance on the error estimation and to allow optimization with less accurate

information. However, a good choice of η can be problem dependent. Nonetheless, if the

trim constraints are involved, allowing more optimization when the constraints are not

accurately enforced can be dangerous if they are essential, such as some failure constraints.

Furthermore, avoiding over-optimization is more important in multifidelity optimization

if the optimization is not restarted, which will be discussed in the next section. Finally, in

this work, we are interested in both accurate optimal design and accurate prediction of the

corresponding output values. Therefore, the optimization tolerance and the discretization

error estimate are required to be close enough to achieve better efficiency, i.e., better

accuracy at a fixed cost. More detailed discussion on this is given in Chapter 6.

5.3.4.1 Hessian Reuse/Restart

When implementing a multifidelity optimization, there is a choice of whether or not the

optimization should be restarted when the fidelity is increased. In a quasi-Newton method,

restarting the optimization will reinitialize the Hessian matrix B, which then throws away

all of the curvature information built on the low-fidelity optimization. This gives more

flexibility for the design update on the higher fidelity. However, the Hessian approximation

needs to be rebuilt which significantly slows down the high-fidelity convergence.

5Only the algorithms with the solver-based trimming approach are shown here, for the optimizer-based
trimming approach, see [67].

100

Algorithm 5.1 Optimization with error estimation and mesh adaptation (error-based)

input : initial design x0, initial coarse mesh Th, optimization tolerance levels
O1,O2, ...,On, safety factor η

output: optimized design x∗

adapted mesh Th with controlled objective error δJadapt ≤ On
1 for l = 1, 2, ..., n do
2 set the total error tolerance as τl = ηOl

while not converged do . optimization algorithm
3 while δJadapt > τl do
4 adapt the mesh Th with refinements . Hessian adaptation
5 update xt,l to meet trim constraints . trimming process
6 compute the objective Jadapt and its error estimate δJadapt

7 end
8 calculate the objective gradient DJadapt/Dxs,l, per Eqn. 4.20
9 update the active design xs,l with meshes Th fixed . line search

10 end
11 finish optimization at level l, xl+1 = xl
12 end

Algorithm 5.2 Optimization with error estimation and mesh adaptation (cost-based)

input : initial design x0, initial coarse mesh Th, cost levels C0, C1, ..., Cn, safety factor η
output: optimized design x∗

optimized accuracy/minimized objective error at given cost Cn
1 for l = 0, 1, ..., n do
2 while not converged do . optimization algorithm
3 for i = 1, ..., Nadapt do
4 adapt/optimize mesh at fixed cost Cl . Hessian adaptation/MOESS
5 update xt,l to meet trim constraints . trimming process
6 compute objective Jadapt and its error estimate δJadapt

7 end
8 set optimization tolerance Ol = ηδJh
9 calculate the objective gradient DJadapt/Dxs,l, per Eqn. 4.20

10 update the active design xs,l with meshes Th fixed . line search

11 end
12 finish optimization at level l, xl+1 = xl
13 end

101

On the other hand, the Hessian matrix approximation can be reused and kept dur-

ing the fidelity increase. The current implementation in this work takes this approach.

Nevertheless, in this approach, the design flexibility of the high fidelity is limited, as the

search direction or the maximum step size given in the QP or LSEI problem is controlled

by the Hessian. Therefore, over-optimization should be avoided as much as possible in

this setting to prevent the design from being trapped around sub-optimal regions. As a

result, in order to avoid over-optimization in the current work, the optimization tolerance

is set to be equal to the estimated objective error in the cost-based approach, or the esti-

mated error is always controlled to be below the optimization tolerance in the error-based

method.

102

CHAPTER 6

Application to Aerodynamic Optimization

In this chapter, we test the frameworks developed in Chapter 5 to optimization prob-

lems governed by conservation-form PDEs, with a focus on aerodynamic shape optimiza-

tions. The key idea is to balance the discretization error and the optimization tolerance in

the optimization problem as presented in Chapter 5, which is elaborated more in practical

optimization problems in the current chapter. We first discuss in Section 6.1 the effects of

the solution accuracy, i.e., the discretization error, and its relation with the optimization

tolerance in an optimization problem. Concrete examples are shown in Section 6.2, in

which a simple optimization governed by one-dimensional advection-diffusion PDE and

a more complicated airfoil optimization governed by Euler equations are considered. In

order to improve the accuracy and the efficiency in these examples, optimization with

error estimation and mesh adaptation, i.e., adaptive CFD, is used to solve these problems

again in Section 6.3. The two optimization frameworks proposed in Chapter 5 are both

investigated to demonstrate their effectiveness of improving the design and their efficiency

of reducing the errors. After showing benefits over traditional methods, we test our pro-

posed frameworks on unconventional design problems and more practical turbulent cases

in Section 6.3.3 and Section 6.3.4. In addition to accuracy and efficiency gains, benefits

on mesh generation and optimization setup have also been shown. The observations in

these problems are summarized in Section 6.4.

6.1 Solution Accuracy and Optimization Tolerance

If we have the exact solution to the PDEs that govern the system, optimization results

will only depend on the optimization tolerance. Suppose that the continuous optimiza-

tion is convex and smooth. The optimizer is guaranteed to converge to a solution within

the tolerance compared to the exact optimum. However, in practice, the exact solution

103

is largely unavailable and thus a discretized flow solution is used to evaluate the ob-

jective functional and the sensitivity, i.e., discrete optimization is adopted. Due to the

discretization errors associated with the discrete optimization, the optimizer is working

on a discrete functional Jh(Uh,x) rather than the exact continuous functional J (u,x).

The difference between these is the output discretization error, which can be estimated

using the output adjoint as discussed in Chapter 4. Therefore, the optimization results

now depend also on the discretization errors, which affect solution accuracy.

As mentioned in Section 5.3.3, the discrete optimization problem is characterized by

not only the corresponding continuous optimization problem but also the numerical error

embedded in the discretization. Suppose that the exact optimal design of the continuous

optimization problem is x∗, while the exact optimal design of the discrete optimization

problem is x∗h. The difference between x∗ and x∗h is a measure of the solution accuracy, yet

difficult to estimate. Instead, the objective error estimate, ‖Jh(x∗h) − J (x∗)‖, using the

adjoint-based approach as shown in Chapter 4, can serve as an indicator of the solution

accuracy 1. For a primal-dual consistent discretization we have limh→0 ‖x∗h − x∗‖ = 0

and limh→0 ‖Jh(x∗h,Uh) − J (x∗,u)‖ = 0, and hence the discrete optimization result

will converge to the exact optimum of the continuous optimization problem. However,

by using a gradient-based optimizer, the optimization results also depend on the opti-

mization tolerance, and very often we converge to a design within the tolerance com-

pared to the exact optimum of the discrete optimization problem, ‖x̃∗h − x∗h‖ ≤ ε or

‖Jh(x̃∗h,Uh) − Jh(x∗h,Uh)‖ ≤ ε, where ·̃ terms denote practically computable results we

get from numerical optimization. In conclusion, the exact error in the computable result

of a practical numerical optimization comes from two sources, one is the numerical error

associated with the discretization and the other is the error due to incomplete conver-

gence of the numerical optimizer controlled by the optimization tolerance. If we denote

the solution accuracy or the numerical error as E , and the optimization tolerance as ε, a

strict bound for the total error in the optimization result can be defined as

‖Jh(x̃∗h)− J (x∗)‖ ≤ ‖Jh(x̃∗h)− Jh(x∗h)‖+ ‖Jh(x∗h)− J (x∗)‖ = ε+ E . (6.1)

From the equation above, we can clearly see that the quality of the optimization results

depends on both the discretization error and the prescribed optimization tolerance. The

computational cost required to reduce the discretization error directly depends on the

computational mesh, while the cost associated with a reduction of optimization tolerance

1More precisely, standard adjoint method only estimates the error due to the solution inaccuracy
assuming the same design, i.e., ‖Jh(x∗

h,Uh)− J(x∗
h,u)‖; while the coupled adjoint approach introduced

in Chapter 4 includes design inaccuracy as well, ‖Jh(x∗
h,Uh)− J(x∗,u)‖.

104

depends on both the computational mesh and the dimension of the design space. The

optimal error distribution between E and ε is fairly complicated, but we assume the error

equidistribution principle still holds. For instance, the over-refining scenario mentioned

in Section 5.3.2 can now be mathematically defined as E � ε, which means the optimizer

cannot fully utilize the current solution accuracy to optimize the design, i.e., the total

error is bounded by the optimization tolerance. Hence we can reduce the cost in the

mesh, i.e., coarsen the mesh, and meanwhile tighten the optimization tolerance, i.e.,

perform more optimization iterations, to improve the design quality without increasing

the overall computational cost. On the other hand, in the over-optimizing cases, the

discretization error is high and the optimization tolerance is relatively low, ε � E , such

that the optimizer may work on the discretization error instead of the physics to improve

the design, i.e., the total error is dominated by the discretization error E . In these cases,

we can refine the mesh while loosening the optimization tolerance to improve the design

quality without sacrificing the overall computational efficiency.

Although over-refining and over-optimizing are both computationally inefficient for

optimization problems, the latter one is more often seen in practice since the optimization

tolerance can be easily reduced in the optimization setup and is often set to be tight

enough in most problems despite possible inefficiency. For example in transonic airfoil

optimization, a physical intuition of the optimization is to remove the shocks that appear

on the airfoil surface, which often requires very tight optimization tolerance even on a

coarse mesh when the solution is inaccurate. Thus the optimization will often converge to a

“shock-free” design on the current mesh, however, the very detailed design modification to

remove the shock may be associated with the discretization error instead of the physics 2.

Although not computationally efficient, the optimized design x̃∗h will be close to the true

optimal design x∗ as long as the discretization error is not overly large. However, on the

other hand, if the discretization error is too high, then the discrete optimization problem is

not anymore a good approximation to the corresponding continuous optimization problem.

As a result, over-optimizing on current mesh may point to the numerically exact optimum,

x∗h, that is far from the true physical optimum, x∗, as the discretization error is high.

In some worse scenarios, large discretization errors can even create spurious optimum or

saddle points. More dangerously, these numerical artifacts do not affect the convergence of

the discrete optimization, while the design issues can only be found after the optimization.

2In fact at some high Mach numbers, if we refine the mesh, shocks will most likely appear again as
the “shock-free” design is an isolated point which will switch to weak shock solutions if any perturbation
presents [182], including boundary condition perturbations or mesh changes in adaptation. Lyu et al. [42]
have observed the shock reappearing in aircraft wing optimizations and similar behavior has also been
found in airfoil optimization problems considered in the current work as shown later in Section 6.2.2.

105

Although in a multifidelity setting, either through an a priori fixed fine mesh or via

mesh adaptation, the design can be pulled back to physically optimal by undoing the

incorrect design modifications from the lower fidelity, yet the convergence on the high-

fidelity optimization slows down and the potential benefits of multifidelity optimization is

thus limited. Furthermore, if the multifidelity optimization uses a quasi-Newton method

and the Hessian approximation is reused, over-optimizing is even more undesirable as the

design update can be limited by the inaccurate Hessian approximation constructed by

inaccurate information from the lower fidelity.

To summarize, aerodynamic optimization in practice is often over-optimizing on the

given mesh such that the design quality (total error) is restricted by the discretization er-

ror. If the discretization error is high, the optimized design might be numerically optimal,

i.e., close to the true optimum of the discrete optimization problem x∗h, but not physi-

cally optimal, i.e., the optimized design is far from the true optimum of the continuous

optimization problem or can even be a spurious optimum. On the other hand, computa-

tional accuracy and efficiency stall when either the solution accuracy or the optimization

tolerance dominates the optimization.

6.2 On the Effects of Discretization Errors in Optimization

6.2.1 One-Dimensional Scalar Advection-Diffusion

In this section, we take a closer look at the example shown in Figure 1.6a, which is an

optimization problem governed by a one-dimensional scalar advection-diffusion equation,

a
∂u

∂x
− ν ∂

2u

∂x2
= 0, x ∈ [0, L];

u(0) = 0, u(L) = 1,

(6.2)

where a is the advection velocity, ν denotes the viscosity and L is the domain length. The

optimization problem is formulated as seeking an optimal Péclet number (Pe), defined as

Pe = aL/ν, to minimize the negative scalar gradient at a specified location,

min
Pe

−∂u
∂x

∣∣∣∣
x=0.76L

. (6.3)

The objective functional J = −∂u
∂x

∣∣
x=0.76L

is an implicit function of the design variable

x = [Pe], defined by the underlying governing equation in Eqn. 6.2. We discretize the

continuous optimization problem using DG with approximation order of p = 2 on a fixed

computational mesh with Ne = 8 elements. The mesh elements are uniformly distributed

106

in the computational domain. As the governing equation in Eqn. 6.2 is relatively simple

and the analytical solution can be obtained, we compare the discretized objective func-

tional Jh(x), i.e., numerical solution, and the continuous one, i.e., analytical solution, in

Figure 6.1a. We can see that the naive uniformly distributed mesh produces a spurious

optimum besides the expected one close to the true optimum, due to the discretization

error. As mentioned in Section 6.1, the discrete optimization problem is characterized by

both the continuous problem (near the exact optimum) and the discretization error (near

the spurious optimum). Moreover, the discrete optimization problem is smooth around

the spurious optimum which will not affect the optimizer convergence even though it is

purely numerical artifact. Therefore, the optimization performed on the uniform mesh

can heavily depend on the starting point, especially for gradient-based methods. The

optimizer may converge to the spurious local optimum if the descent direction is pointing

to it. In order to more closely study the spurious optimum, we plot the corresponding

state solution u(x) in Figure 6.1b. We can observe a severe numerical oscillation near the

location of interest for the solution on the uniform mesh, while the analytical solution

is almost flat nearby. The numerical oscillation shown in Figure 6.1b is only one of the

possible sources that may cause spurious optima. Many physical features that are sensi-

tive to discretization errors, such as boundary layers or shocks in flow problems, can also

potentially create spurious optima.

0 10 20 30 40 50 60

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

2 3 4

-1.6

-1.55

-1.5

-1.45

-1.4

(a) discretized/continuous objectives

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.7 0.75 0.8 0.85 0.9

-0.05

0

0.05

0.1

(b) state solution at the spurious optimum

Figure 6.1: Optimization governed by a one-dimensional scalar advection-diffusion PDE
on a uniform coarse mesh.

We perform two optimizations, both with a very tight optimization tolerance to elim-

inate the uncertainty due to optimization tolerance, such that we can see more clearly

the effects of discretization error in this case. Starting from two different Pe numbers,

107

the results are listed in Table 6.1 3. As expected, the optimized design converges to the

spurious optimum when the initial point is close to it, while it converges to the more cor-

rect one if the initial design is close to the true optimum. Both the exact error measured

with respect to the true solution and the error estimate using the adjoint-based method

are shown in Table 6.1 as well. If the optimizer converges to an inaccurate optimum that

is close to the exact one, the error estimate gives a good prediction of the optimization

accuracy. On the other hand, if the optimizer converges to the spurious optimum caused

by the discretization error, the error estimates at the spurious optimum, while not very

effective, are generally large enough to indicate that the optimization is not converging

correctly. Thus even if mesh adaptation is not performed, the objective error estimate by

itself still gives a good assessment of the design quality. Results incorporating with mesh

adaptation are shown in Section 6.3.1.

Table 6.1: Optimization results (advection-diffusion PDE) on a uniform mesh. The dis-
cretization uses DG with p = 2 and Ne = 8 elements, the optimization tolerance is set to
be ε = 10−10.

Initial design x∗h Jh(x
∗
h) δJh(x

∗
h) ‖xh − x∗‖ ‖Jh(x∗h)− J (x∗)‖

x0 = 40 44.60287 -0.49700 -0.15555 40.79686 1.06446
x0 = 20 3.64579 -1.54037 0.02063 0.16022 0.02109

6.2.2 Inviscid Transonic RAE 2822 Airfoil Optimization

In this section, we consider a higher-dimension optimization problem governed by more

complicated PDEs, namely the transonic airfoil optimization problem. Although less prac-

tical than three-dimensional wing or aircraft design optimization, airfoil optimization has

long been a representative problem in aerodynamic optimization since the aerodynamic

performance of an aircraft wing is strongly affected by span-wise airfoil shapes. Transonic

airfoil optimization is of particular interest as the cruise speed of modern business jets

often falls into the transonic regime. Moreover, the drag coefficient of the airfoil, often

used as the optimization objective, is very sensitive to the design variations due to the

involvement of shocks. Consequently, transonic optimization problem is a good testing

problem for both the optimization algorithms and the CFD flow simulations.

We consider here the optimization of a Royal Aircraft Establishment (RAE) 2822 air-

foil [183]. The goal of the optimization is to seek an optimal airfoil shape and angle of

3Since the optimization tolerance is very small compared to the discretization error, i.e., ε � E , we
assume x̃∗

h = x∗
h in the table.

108

attack to minimize the drag coefficient, subject to a fixed lift trim condition and a mini-

mum area constraint. This optimization problem originates from the second case of a set

of benchmark cases proposed by ADODG 4, although for simplicity we ignore the moment

constraint here. Furthermore, inviscid flow simulation (Euler equation) is used with an

element-based artificial viscosity model [128] for shock capturing. A fully-turbulent ver-

sion of this problem will be investigated later in Section 6.3.4. The optimization problem

starts with a RAE 2822 airfoil at a freestream Mach number of 0.734, the target lift of

the trimming condition is c̄` = 0.824 and the minimum area constraint is set to be the

initial area of RAE 2822. The airfoil is parameterized with 16 Hicks-Henne basis functions

(8 each for the upper and lower surfaces), and cubic curved mesh elements are used to

represent the boundary.

In this problem, although error estimates are used to assess the design quality during

the optimization, the computational mesh is not adapted. We manually generate a mesh

around the RAE 2822 airfoil, which consists of 2009 elements as shown in Figure 6.2. The

farfield is a square that is 2000 chords away from the airfoil and the airfoil boundary is

represented by cubic curved elements. Four optimizations with order p from 1 to 4 are

performed independently, all starting with this same mesh on the RAE 2822 airfoil. The

optimization tolerance is set to be around 5× 10−8 for all of the optimizations 5, which is

expected to be much smaller than the discretization error on the current mesh with the

specified approximation orders. The objective convergence, with estimated objective error

is compared in Figure 6.3a, while the final optimized shapes are compared in Figure 6.3b.

As we expected, the estimated objective error is extremely high for lower p. Although as

p increases the error drops down, yet the error estimates for higher orders are still much

larger than the optimization tolerance. In Figure 6.3b, we can see that the final optimized

shapes using lower orders p = 1, 2 are significantly different from the optimized shapes

obtained using higher orders, p = 3, 4. However, surprisingly, the Mach number contours

and the pressure coefficient distributions on all of these designs using the associated

solution order exhibit “shock-free” features as shown in Figure 6.4. Since here we have

high-order solutions available, e.g., the p = 3, 4 solutions, we would trust more their

solutions and prefer the resulting supercritical-kind designs which are in general favorable

for transonic regimes. However, in practice, given a fixed mesh and a low-order solution,

it is difficult to assess the design by just examining the objective convergence and the

solution field.

In order to further examine the designs obtained using lower-orders, we use p = 4 on

4Available at https://sites.google.com/view/mcgill-computational-aerogroup/adodg
5In fact, the tolerances are adjusted until a nearly “shock-free” design is obtained on each order.

109

https://sites.google.com/view/mcgill-computational-aerogroup/adodg

Figure 6.2: Fixed manually generated mesh on the RAE 2822 airfoil. The left and right
figures show the mesh zoomed into the leading edge and the trailing edge, respectively.
The blue nodes denote the high-order nodes in the curved boundary elements, while the
rest of the elements are linear.

10 20 30 40 50
Iterations

10−4

10−3

10−2

J
a
d
a
p
t

p = 1

p = 2

p = 3

p = 4

(a) convergence history

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

optimized p = 1

optimized p = 2

optimized p = 3

optimized p = 4

(b) optimized designs

Figure 6.3: Comparison of optimizations on a fixed mesh with various approximation
orders. In the convergence history plot, the error bars show the error estimates including
the constraint output error, per Eqn. 4.37.

110

(a) RAE 2822, p = 4 solution (b) p = 1 final design

(c) p = 2 final design (d) p = 3 final design

(e) p = 4 final design

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

optimized p = 1

optimized p = 2

optimized p = 3

optimized p = 4

(f) pressure distributions

Figure 6.4: Mach contour and pressure distribution of the optimized designs on a fixed
mesh with various approximation orders. The Mach number contour on the initial RAE
2822 airfoil is obtained using a p = 4 solution, while the Mach contours on the optimized
designs are from solutions on the corresponding orders, e.g., the Mach contour on the
p = 2 optimized design is from the p = 2 flow solution. All of the Mach contour plots
have the same color limits, [0, 1.35].

111

the current mesh as the “exact” space, and re-solve the flow and trimming equations 6

on the final designs obtained from lower-order solutions. Moreover, some intermediate

designs from the low-order optimizations are also re-examined using the “exact” p = 4

space. The re-analysis results for p = 1, 2, 3 are shown in Figures 6.5–6.7, and the de-

tailed objective values are summarized in Table 6.2. As we can see in these figures, the

“shock-free” designs on the original low-order spaces all produce new shocks when the

approximation order is increased, i.e., when the discretization error is reduced. Dramatic

flow field changes can be observed on the final designs from the p = 1 and p = 2 opti-

mizations, while the flow field on the p = 3 final design is similar when increasing the

order, yet weak shocks are still observed when the flow field is more resolved. More im-

portantly, for these low-order optimizations, we are able to find some intermediate designs

that exhibit better performance, i.e., lower drag coefficients under the same trim condi-

tion, than the original optimized design, when measured on the p = 4 space. Also, the

shapes of these intermediate designs are found to be closer to the “true” p = 4 optimized

design. However, due to the discretization errors in the original low-order approxima-

tion space, they are not considered superior to subsequent designs and are aborted by

the optimizer. This implies that the optimizer, after these intermediate designs, is most

likely working on the discretization error instead of the physics to improve the design.

This type of over-optimization can lead to incorrect designs when the discretization er-

ror is high such as the p = 1 and p = 2 optimizations in this case, which is similar to

what we have found in Section 6.2.1; on the other hand, when the discretization error

is not very high but still much higher than the optimization tolerance, such as p = 3 in

this case, the over-optimization reduces the efficiency of the optimization as considerable

computational resources are wasted on unnecessary convergence that is dominated by

the discretization errors. In addition, both scenarios can hamper the effective use of a

multifidelity optimization framework, as in the former case the low-fidelity optimization

will provide the high-fidelity optimization a bad starting design which slows down the

high-fidelity convergence; while the latter one will waste much computational time on

unnecessary low-fidelity convergence although the high-fidelity optimization is not much

affected 7.

As depicted in Figure 6.3a, the low-order optimization is still effective when the ob-

6When analyzing the designs, we always enforce the lift constraint. In other words, as we increase the
p to p = 4, the trimming condition is satisfied by varying the angle of attack while keeping the shape
fixed.

7In multifidelity frameworks where the optimizer is not restarted/reinitialized when increasing the
fidelity, e.g., the Hessian matrix is not reinitialized in this work, over-optimization in low fidelity might
limit the design update on the high fidelity although the starting design for the high fidelity is not affected
much.

112

jective difference is lower than the estimated objective error, which means picking an op-

timization tolerance slightly lower than the objective error estimate might have potential

benefits, especially when the objective error is not too high, e.g., the p = 3 optimization

in Figure 6.3a. In those cases, the discretization error might still be high compared to the

optimization tolerance, while the gradient (objective relative shape) might be accurate

enough for the prescribed optimization tolerance. If we only care about the final design,

this benefit might be useful but more study is required to investigate the optimal opti-

mization tolerance given a discretization error level. However, if we are concerned about

the final accuracy in the objective as well, as suggested in Eqn. 6.1, the final accuracy is

always bounded by the discretization error if the optimization tolerance is low. In these

scenarios, it is always more beneficial to shift the cost from the optimizer to the flow

solver side, i.e., increasing the optimization tolerance while refining the mesh.

On the other hand, as we can see in Table 6.2, the objective error estimate is fairly

accurate in most cases, though the errors on the p = 3 designs tend to be a little over-

estimated. Therefore, it is in general effective to use the objective error estimate to guide

the optimization, or in turn to use the optimization tolerance to restrict the allowable

objective error estimate. In this work, if mesh adaptation is applied, we refine the mesh

until the objective error estimate is below the optimization tolerance in an error-based

approach, while if the cost-based approach is used, we set the optimization tolerance to be

always equal to the estimated objective error. More details of the proposed optimization

frameworks can be found in Chapter 5 and the results of applying the proposed adaptive

CFD approaches on this problem are given in Section 6.3.2.

Table 6.2: Optimization results (inviscid transonic RAE 2822 airfoil optimization) on a
fixed mesh with various approximation orders. The design index is the iteration number
of the considered design, JH denotes the objective evaluated on the current space, while
Jh is the objective obtained on the “true” p = 4 space; the estimated δJh represents the
error estimate using the adjoint-weighted residual, per Eqn. 4.37, while the “true” δJ
measures the difference between the objectives on the current and the “true” space.

p design index JH Jh “true” δJ estimated δJ
1 6 3.74607× 10−3 1.89360× 10−4 3.55671× 10−3 3.45309× 10−3

1 25 3.14681× 10−3 2.75378× 10−4 2.87143× 10−3 3.05369× 10−3

2 8 2.66938× 10−4 5.23784× 10−5 2.14560× 10−4 1.71277× 10−4

2 56 2.00560× 10−4 6.10801× 10−5 1.39480× 10−4 1.44399× 10−4

3 19 3.12910× 10−5 2.56854× 10−5 5.60560× 10−6 1.36850× 10−5

3 25 2.93655× 10−5 2.60104× 10−5 3.35510× 10−6 1.09624× 10−5

113

(a) p = 1 final design, p = 1 solution (b) p = 1 final design, p = 4 solution

(c) p = 1, the 6th design, p = 1 solution (d) p = 1, the 6th design, p = 4 solution

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

p = 1, final design

p = 1, the 6th design

p = 4, final design

(e) design comparison

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

p = 1, final design

p = 1, the 6th design

p = 4, final design

(f) pressure distributions

Figure 6.5: Re-analysis of the p = 1 designs on the p = 4 “true” space. All of the Mach
contour plots have the same color limits, [0, 1.35].

114

(a) p = 2 final design, p = 2 solution (b) p = 2 final design, p = 4 solution

(c) p = 2, the 8th design, p = 2 solution (d) p = 2, the 8th design, p = 4 solution

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

p = 2, final design

p = 2, the 8th design

p = 4, final design

(e) design comparison

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

p = 2, final design

p = 2, the 8th design

p = 4, final design

(f) pressure distributions

Figure 6.6: Re-analysis of the p = 2 designs on the p = 4 “true” space. All of the Mach
contour plots have the same color limits, [0, 1.35].

115

(a) p = 3 final design, p = 3 solution (b) p = 3 final design, p = 4 solution

(c) p = 3, the 19th design, p = 3 solution (d) p = 3, the 19th design, p = 4 solution

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

p = 3, final design

p = 3, the 19th design

p = 4, final design

(e) design comparison

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

p = 3, final design

p = 3, the 19th design

p = 4, final design

(f) pressure distributions

Figure 6.7: Re-analysis of the p = 3 designs on the p = 4 “true” space. All of the Mach
contour plots have the same color limits, [0, 1.35].

116

6.3 Optimizations with Adaptive CFD

As we can see from the examples in Section 6.2, the discretization error can have detri-

mental effects on optimization. Although by estimating the discretization error during

the optimization, the design quality can be effectively assessed, yet the error is still not

controlled and the optimization has to restart with a better mesh to avoid poor designs.

In order to actively control the discretization error and to better balance the discretiza-

tion error and optimization tolerance, the optimization frameworks using adaptive CFD

introduced in Chapter 5 are applied to improve the accuracy and efficiency of the opti-

mization. Again, we start with the one-dimensional scalar advection-diffusion problem,

followed by two-dimensional airfoil optimization problems.

6.3.1 Revisit of the One-Dimensional Advection-Diffusion Problem

The same optimization problem as considered in Section 6.2.1 is studied here. In-

stead of optimizing on a fixed uniform mesh, we this time use two adapted meshes: one

isotropically-refined mesh based on localized output errors and one optimized mesh ob-

tained from MOESS 8. To compare with the fixed uniform mesh used in Section 6.2.1, we

enforce the DOF of the adapted meshes to be the same, i.e., Ne = 8, however the mesh is

actively adapted during the optimization. Meanwhile, the optimization tolerance is also

kept the same as used in Section 6.2.1. The discretized objectives on different meshes

are compared in Figure 6.8a. By actively adapting the mesh during the optimization,

the spurious optimum is eliminated as shown in Figure 6.8b and thus a reasonably ac-

curate objective functional profile over the entire design space is obtained. Therefore,

the optimization performed with adapted meshes are more robust with respect to the

starting point, as the objective shape over the entire design space is better preserved by

reducing the discretization error. Since the optimization tolerance is much smaller than

the discretization error in this case, the design quality is mostly restricted by the dis-

cretization error around the exact optimum. By zooming into the region near the exact

optimum, we can see that the uniform mesh has the highest error and thus leads to a

most inaccurate optimum. The optimized mesh tends to give better accuracy compared

to the isotropically-adapted mesh, as the former approach has more flexibility of redis-

tributing the mesh nodes while the latter one only isotropically refines the elements with

the highest error. The mesh difference is also well-reflected in Figure 6.8c. The numerical

8In the isotropic adaptation, we start with a coarse mesh and isotropically refine the elements with
highest objective error indicators until the target cost is met. In one dimension, there is no directional
anisotropy, while Hessian adaptation and MOESS can still be used to only control the element sizing.
For simplicity, we only test MOESS here.

117

oscillation observed in this problem represents only one of the possible sources that may

cause spurious optima. Many physical features that are sensitive to discretization errors,

such as boundary layers or shocks in flow problems, can also potentially create spurious

optima. Thus output-based error estimation and mesh adaptation are expected to be

more important in complex optimization problems, especially for novel configurations in

which little knowledge or experience is available a priori.

0 10 20 30 40 50 60

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

1 2 3 4 5 6 7 8

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

(a) discretized/continuous objectives

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

0.7 0.72 0.74 0.76 0.78 0.8

-0.01

-0.005

0

0.005

0.01

0.015

(b) state solution at the spurious optima

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) mesh node distribution of the fixed and adapted meshes

Figure 6.8: Optimization governed by the one-dimensional scalar advection-diffusion PDE
on different meshes.

Again, we perform two optimizations starting from different Pe numbers as Sec-

tion 6.2.1, but with adapted meshes this time. The results are summarized in Table 6.3.

As expected, the optimization on the fixed uniform mesh converges to the spurious op-

timum when the initial design is close to it, whereas the adapted meshes produce more

accurate results that are more robust to the starting point. Furthermore, optimization

with meshes produced by MOESS exhibits better accuracy since the optimized meshes

tend to obtain a better approximation of the objective over the design space. Also, similar

118

to what we have seen in Section 6.2.1, objective error estimates on all of the meshes give

an accurate prediction of the optimization accuracy if the design converges close to the

true optimum. On the other hand, error estimates around the spurious optima are often

large enough to indicate poor design quality.

Table 6.3: Optimization results (advection-diffusion PDE) on uniform and adapted
meshes. The discretization uses DG with p = 2 and Ne = 8 elements, the optimiza-
tion tolerance is set to be ε = 10−10.

Initial design Mesh x∗h Jh(x
∗
h) δJh(x

∗
h) ‖xh − x∗‖ ‖Jh(x∗h)− J (x∗)‖

x0 = 40
Uniform 44.60287 -0.49700 -0.15555 40.79686 1.06446

Iso-adapted 3.72145 -1.54724 0.01309 0.08455 0.01423
Optimized 3.81001 -1.56218 -0.00063 0.00400 0.00072

x0 = 20
Uniform 3.64579 -1.54037 0.02063 0.16022 0.02109

Iso-adapted 3.84404 -1.55622 0.00505 0.03803 0.00525
Optimized 3.81001 -1.56218 -0.00063 0.00400 0.00072

6.3.2 Revisit of the Inviscid Transonic Optimization on the RAE 2822 Airfoil

In this section, we revisit the inviscid transonic airfoil optimization problem that was

considered in Section 6.2.2. As shown earlier, the optimization results heavily depend

on the accuracy of the solution, i.e., the discretization errors. High discretization errors

induced by either coarse meshes or low approximation orders can potentially lead the

optimizer converging to an undesired design. On the other hand, given limited accuracy

on the objective output, tight optimization tolerance might force the optimizer to work on

the discretization error rather than the actual physics. Therefore, either the mesh needs

to be adapted to meet the current optimization requirement or the optimization tolerance

needs to be loosened to avoid excessive design exploration using inaccurate information.

From previous study in Section 6.2.2, the initial RAE 2822 airfoil features a strong

shock at the specified trimming condition, thus an initial mesh can be carefully designed

or even adapted to capture the shock effectively. However, this only helps the analysis on

the original shape, which will be surpassed by other designs quickly in the optimization.

Particularly, we expect the design to be improved such that the shock is significantly

weakened or removed. Any substantial refinement on the initial shock location will thus

not effectively increase the accuracy but instead add considerable computational cost to

the optimization. As a result, a computationally affordable mesh with specific refinements

around the airfoil is generally used in this optimization.

In order to improve the accuracy and efficiency of the optimization, we applied the

119

optimization frameworks with adaptive CFD proposed in Chapter 5. Both the error-based

and the cost-based approaches as described in Algorithm 5.1 and Algorithm 5.2 are tested

in this problem. The error-based approach uses the error-based Hessian adaptation, while

the cost-based approach adopts either the MOESS or the cost-based Hessian adaptation.

Thanks to the automated adaptation process, a fairly coarse mesh can be used, which

alleviates the efforts on mesh generation and thus accelerates the design setup. The

starting mesh for the optimization with adaptive CFD consists of 393 triangular elements

as shown in Figure 6.9a. Again, the farfield is 2000 chords away from the airfoil and

cubic curved elements are used to represent the airfoil boundary. In the error-based

optimization, a set of optimization tolerance levels is specified with an ultimate tolerance

of 0.02 drag counts, i.e., 2× 10−6. On the other hand, the cost-based optimization starts

with a fairly low cost level, and degrees of freedom are added once the optimization

converges at the current cost level, until the final optimization tolerance, set to be equal

to the output error estimate, is close to 0.02 drag counts. To compare with traditional

optimization method, we also run a fixed-fidelity optimization on a fixed mesh as shown

in Figure 6.9b, which has comparable DOF as the final meshes obtained by cost-based

mesh adaptation. All the simulations use the same solver setting as Section 6.2.2, while

to focus on mesh adaptation, a fixed order p = 2 is used.

The adapted final meshes obtained using different methods are shown in Figures 6.9c–

6.9e. All of the adapted meshes have similar refinement patterns: isotropic elements

are put around the leading and trailing edges while mesh anisotropy is evident around

the shocks on the final designs (will be shown in the Mach contours later). However,

Hessian based adaptation has more refinements around the shocks than the MOSS adapted

mesh. On the other hand, MOESS mesh features high anisotropy along the stagnation

streamline, where only little isotropic refinement is allocated in Hessian adapted ones.

This type of distinctions are expected and are common in practice, as the stagnation

streamline is more of an adjoint solution feature, which is not often presented in the

primal solutions and thus cannot be effectively detected by the Mach number Hessian.

As mentioned in Chapter 3, the accuracy of the output is determined by the accuracy of

both the primal and adjoint solutions. Consequently, MOESS in general achieves a better

accuracy than Hessian-based adaptation with the same cost by resolving both the primal

and adjoint features. This accuracy benefit will be discussed more later.

The objective convergence and the mesh evolution in the optimization are shown in

Figure 6.10. As each optimization converges to the optimum with very similar number

of iterations, we plot the objective verses the aggregated total DOF instead of the itera-

tions to separate the convergence curves. The aggregated DOF in each optimization are

120

(a) initial mesh for adaptive runs (b) the coarse fixed mesh

(c) final mesh of error-based Hessian adaptation

(d) final mesh of cost-based Hessian adaptation

(e) final mesh of MOESS

Figure 6.9: Revisit of the inviscid transonic optimization on the RAE 2822 airfoil: meshes
for multifidelity and fixed-fidelity optimizations. Only the final adapted meshes for the
multifidelity optimization are shown, with a zoom-in plot on the left and a zoom-out one
on the right.

121

accumulated at each major iteration with the current mesh DOF, i.e., once a new design

is accepted, the aggregated DOF get updated by adding the current mesh DOF. We can see

in Figure 6.10a that the estimated discretization error of the objective is always above

the optimization tolerance in the fixed-fidelity (fixed-mesh) optimization. At the end of

the optimization, the objective errors are much larger than the objective changes between

different designs. As a result, the optimization accuracy (accuracy of objective on the

optimized design) is dominated by the discretization error due to the imbalance between

the discretization error and the optimization tolerance. In these scenarios, the optimizer

may work on the numerical error instead of the physics to minimize the drag and thus

converges to undesired designs. In contrast, the discretization error is always controlled

to be below the optimization tolerance in the error-based optimization approach, or the

optimization tolerance is adjusted to be equal to the discretization error in the cost-based

methods. On the other hand, the multifidelity optimizations built on the adapted meshes

all require much less iterations on the highest fidelity thanks to the better starting design

obtained from the lower-fidelity optimization.

104 105

Degrees of freedom

10−4

10−3

J
a
d
a
p
t

fixed mesh

error-based Hessian

cost-based Hessian

MOESS

(a) objective convergence history

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iterations

5000

10000

15000

20000

25000

D
e
g
re

e
s

o
f

fr
e
e
d

o
m

fixed mesh

error-based Hessian

cost-based Hessian

MOESS

(b) mesh size evolution

Figure 6.10: Revisit of the inviscid transonic optimization on the RAE 2822 airfoil: objec-
tive convergence history and mesh size evolution for different methods. In the objective
convergence plot, the error bars denote the objective error estimates while the shaded
area represent the optimization tolerance. In the mesh evolution plot, for the cost-based
optimization the mesh cost at each fidelity can be easily read; while the error-based opti-
mization has the first 5 iterations in the lowest fidelity, 4 iterations in the middle fidelity
and 5 more iterations on the highest fidelity.

In the mesh evolution plot shown in Figure 6.10b, we observe the differences between

various adaptation mechanics. For the error-based optimization approach, the error is

controlled to be below the optimization tolerance at each fidelity. Therefore, in the same

fidelity, the mesh can be refined if the objective error is above the optimization tolerance

on a new design, otherwise the mesh stays fixed. For example, in the optimization with

122

error-based Hessian adaption (blue line), the first 3 designs are obtained on the same mesh

as the objective errors are below the optimization tolerance, while at the 4th design the

mesh is refined since the error increases on the new design and is above the optimization

tolerance; however, the optimization fidelity stays the same until it converges at the 5th

design. On the other hand, the cost-based approaches, both the cost-based Hessian adap-

tation and MOESS, keep adapting the meshes with the fixed cost at each fidelity. As we

can see, the error-based approaches and the cost-based approaches have very similar mesh

sizes at the low fidelities; nevertheless, the error-based approach has much higher DOF on

the highest fidelity. There are several reasons for this difference. First of all, the cost-

based approaches frequently adapt the mesh by redistributing the mesh resolution, which

in general results in a higher accuracy at low fidelities compared to the error-based adap-

tation and thus better designs. As a result, the starting design on the highest fidelity for

cost-based approaches has weaker shocks and hence requires lower DOF to achieve similar

accuracy compared to the error-based ones. Furthermore, as the error-based adaptation

keeps the mesh fixed as long as the error is still below the optimization, the error-based

adaptation tends to over-refine areas that are important for some intermediate designs

but not necessary for the final design. On the other hand, cost-based adaptation avoids

the over-refinement although it requires several adaptive iterations with the fixed DOF at

each major design iteration. Some meshes on the highest fidelity for different adaptation

methods are shown in Figure 6.11. We can see that the meshes for the starting designs on

the highest fidelity for different adaptation mechanics all have mesh elements well-aligned

to the weak shocks on the upper surface since all of the them are adapted on the current

design. However, for later designs, the error-based adaptation keeps the mesh fixed since

the objective error still meets the optimization tolerance. As a result, the refinement

around the original shock persists even though it is almost eliminated on later designs.

Inefficiency arises as some of the approximation capacity of these degrees of freedom is

lost. In contrast, the cost-based approaches actively redistribute the mesh elements to

always have the refinements aligned to the shocks even when their location and strength

change during the optimization as shown in Figure 6.11. Therefore, cost-based adaptation

utilizes the mesh DOF more effectively and the benefits can be more significant in problems

with dramatic design changes or with complex physics.

The accuracy benefits of the proposed methods are summarized in Table 6.4. Due to

high discretization errors, the optimization using the fixed mesh converges to a design

that has much higher drag compared to the designs obtained using adapted meshes. On

the other hand, the optimizations using adapted meshes converge to similar designs with

close drag values. Furthermore, the objective error estimates on the final designs are fairly

123

(a) error-based Hessian adaptation, the 10th and 14th designs from left to right

(b) cost-based Hessian adaptation, the 11th and 12th designs from left to right

(c) MOESS, the 11th and 13th designs from left to right

Figure 6.11: Mach contours on the adapted meshes from different adaptation methods.
The color limit is clipped to [0.9, 1.1] to show the shocks.

124

accurate, assuring the effectiveness of using error estimation to control the optimization.

The final designs are compared in Figure 6.12, in which we can see that the optimized

design on the fixed mesh is noticeably different from the designs on adapted meshes,

which are close to each other despite small differences. The design differences are also

reflected in the Mach number contours and the pressure distributions, where the fixed-

mesh design features stronger shocks compared to other designs. Note that all of the

final designs possess complex shock structures as shown in the Mach contours, which are

obtained using much finer adapted meshes. On the one hand, the shocks are present

even on the original working meshes used in the optimization, both the fixed and adapted

ones. We can tighten the tolerance to possibly achieve “shock-free” designs on the original

working meshes by ignoring the imbalance with respect to the error estimates, however,

the discretization errors will dominate the design update. On the other hand, the shocks

may appear on the finer adapted meshes even if the design does not produce a shock

on the original working mesh. In a word, in an optimization tightly coupled with error

estimation and mesh adaptation, “shock-free” designs are not required and not necessary

given a relatively high error level, i.e., loose optimization tolerance.

In addition to accuracy benefits, computational efficiency gains of the proposed meth-

ods compared to the fixed-mesh optimization are shown in Table 6.5. As expected, mul-

tifidelity optimizations with adapted meshes converge much faster on the highest fidelity

with better designs from the lower fidelity. Although the error-based adaptation yields a

mesh that is even finer than the fixed mesh we used, the computational time is around

25% less compared to the fixed-mesh optimization. Due to lower efficiency with the

error-based approach as mentioned earlier, the computational costs are higher than the

cost-based approaches. On the other hand, both using a cost-based approach, MOESS

achieves slightly higher accuracy on the objective calculations as shown in both Table 6.4

and Table 6.5 by better resolving the adjoint features such as stagnation streamlines.

Slightly lower computational time of the optimization using MOESS over cost-based Hes-

sian is observed, we attribute it to faster iterative convergence in the flow solver since the

mesh anisotropy is better aligned to both primal and adjoint features.

Table 6.4: Revisit of the inviscid transonic optimization on the RAE 2822 airfoil: opti-
mization results summary on different meshes.

Final mesh DOF Jadapt
m Jadapt

m (“true”)
Fixed mesh 20208 1.003× 10−4 ± 6.981× 10−5 3.178× 10−5

Error-based Hessian 27864 2.730× 10−5 ± 1.797× 10−6 2.586× 10−5

Cost-based Hessian 20502 2.679× 10−5 ± 2.154× 10−6 2.484× 10−5

MOESS 19956 2.556× 10−5 ± 1.220× 10−6 2.436× 10−5

125

(a) fixed mesh (b) error-based Hessian adaptation

(c) cost-based Hessian adaptation (d) MOESS

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

optimized (fixed mesh)

optimized (error-based Hessian)

optimized (cost-based Hessian)

optimized (MOESS)

(e) initial and optimized designs

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

1.5

−
c
p

RAE 2822

optimized (fixed mesh)

optimized (error-based Hessian)

optimized (cost-based Hessian)

optimized (MOESS)

(f) pressure distributions

Figure 6.12: Revisit of the inviscid transonic optimization on the RAE 2822 airfoil: final
design comparison. The Mach contours (range is 0.0 ∼ 1.35) and the pressure distributions
are obtained on much finer adapted meshes.

126

Table 6.5: Revisit of the inviscid transonic optimization on the RAE 2822 airfoil: com-
putational cost comparison. In cost-based optimization, the optimization tolerance is
dynamically adjusted to be equal to the objective error estimate; the approximate values
of the optimization tolerance in this table are from the last iteration on each fidelity. The
computational time results are obtained on the same HPC cluster (3.0 GHz Intel Xeon
Gold 6154) using parallel runs with 16 cores and 16GB RAM.

Optimization methods Optimization level Optimization tol (Drag count) CPU time (s)

Fixed-fidelity (fixed mesh) L3 0.020 4.014× 103

Multifidelity (error-based Hessian)
L1 2.000 5.287× 102

L2 0.200 4.271× 102

L3 0.020 2.101× 103

Multifidelity (cost-based Hessian)
L1

δJadapt
≈ 0.710 3.814× 102

L2 ≈ 0.121 6.408× 102

L3 ≈ 0.022 1.237× 103

Multifidelity (MOESS)
L1

δJadapt
≈ 0.808 4.200× 102

L2 ≈ 0.084 3.547× 102

L3 ≈ 0.012 7.893× 102

127

6.3.3 Tandem RAE 2822 Airfoils

As seen in the problems considered above, the proposed methods improve both the

efficiency and the accuracy by a multifidelity framework with active discretization error

control. In terms of the adaptation and optimization integration, the cost-based approach

outperforms the error-based one by more frequent adaptation and less over-refinement on

undesired designs. In this section, we apply the cost-based approach to a more compli-

cated case which involves two airfoils close by. Although less common and not well-studied

as the single airfoil optimization, this case is representative of the design of some uncon-

ventional configurations such as the strut-braced wing and the joined-wing aircraft shown

in Figure 1.1.

We again use the RAE 2822 airfoil, and the configuration setup is shown in Fig-

ure 6.13a. The two RAE 2822 airfoils are placed two chords away and the height differ-

ence is around a quarter chord. The freestream flow condition is the same as the single

RAE 2822 airfoil optimization considered before. Figure 6.13a shows a very coarse hand-

generated mesh around the two airfoils, where the farfield is a square that is 100 chords

away from the airfoils. Figure 6.13b shows the Mach number contour and Figure 6.13c

depicts the conservation of the x -momentum component for the drag adjoint. We can

see in the Mach contour that a strong shock is present on the first airfoil upper surface,

while the second airfoil features two shocks: one weak shock close to the leading edge and

another stronger one around the middle chord. A significant impact of the first airfoil

wake on the second airfoil is also observed in the Mach number contour. On the other

hand, the adjoint field features λ-like adjoint “shock” structures over the two airfoils,

as well as a high variation along the leading-edge stagnation streamline from the second

airfoil. The complicated primal and adjoint fields pose challenges for mesh generation.

Due to limited knowledge about the flow field a priori, much effort may be required to

obtain a high-quality mesh for this problem. Enough resolution is needed near both of the

airfoil boundaries, and the area between them may also require specific refinement. Extra

refinement for shocks is in general impossible a priori and not necessary either since the

shock strength and location will vary significantly during the optimization. In contrast

to the challenging meshing task in traditional optimization, a fairly coarse mesh such as

the one in Figure 6.13a can be used to start the optimization if adaptive CFD is used.

For simplicity, we only consider the shape optimization of the second airfoil while

keeping the first airfoil shape fixed. The optimization seeks the optimal shape and the

angle of attack 9 to minimize the total drag of the two airfoils, i.e., Jadapt = cd = cd,1+cd,2,

9No relative angle between the two airfoils.

128

(a) initial coarse mesh

(b) Mach number contour, color limit is [0.3, 1.35]

(c) x -moment component of the drag adjoint, color limit is [−1.0, 0.8]

Figure 6.13: Tandem RAE 2822 airfoils: initial configuration and the corresponding primal
and adjoint fields.

129

where cd,1 and cd,2 denote the drag coefficient of the first and second airfoils, respectively.

The trim constraint is the total lift of the two airfoils, i.e., J trim = c` = c`,1 + c`,2, whose

target value is set to be 1.5. The airfoil shape is parameterized with 16 Hicks-Henne basis

functions and the airfoil area is again restricted to be no smaller than the original value.

We apply the cost-based optimization approach in this problem, starting with the

coarse initial mesh shown in Figure 6.13a. Both the cost-based Hessian adaptation and

MOESS are considered here. The final adapted meshes are compared in Figure 6.14. Both

the Hessian adaptation and MOESS refine the shocks on the two airfoils with anisotropic

elements, while the MOESS mesh features more anisotropic resolution of both the stag-

nation streamlines and the post shock locations. Hessian adaptation has also targeted

these areas, however, with nearly isotropic elements, since these anisotropy is tied to the

adjoint field which can not be obtained directly from the Mach number Hessian. As dis-

cussed earlier in Chapter 3, the accuracy of the output depends on the accuracy of both

the primal and the adjoint solutions, MOESS has thus a better accuracy in this case.

This accuracy gain is also reflected in the objective convergence and mesh evolution plots

shown in Figure 6.15. At the lowest fidelity, the two methods have similar convergence

as the objective changes are much larger than the discretization errors. However, at the

medium fidelity, only two design iterations are allowed (optimization tolerance set to be

equal to the estimated error) on Hessian adapted meshes due to the high discretization

errors, while the MOESS has a much smaller error which permits more design updates

with reliability. The better accuracy of MOESS is also observed at the highest fidelity,

leading to a lower allowable optimization tolerance. However, optimization with MOESS

meshes still converge faster on the highest fidelity due to a better design obtained from

the medium fidelity. This performance benefit of MOESS can also be observed in the total

computational time as listed in Table 6.6, where the optimization with MOESS achieves

around 24% time saving compared to the one using Hessian-based adaptation.

The optimized designs obtained from the two methods are compared in Figure 6.16.

As the shape of the first airfoil is fixed, we only compare the optimized shapes of the

second airfoil in Figure 6.16e. Both methods try to shift up the second airfoil such that

the strong down-wash caused by the first airfoil wake is significantly reduced, which can be

observed by comparing the final Mach contour plots in Figures 6.16a–6.16b and the initial

one in Figure 6.13b. Meanwhile, the optimizations flatten the upper surface to reduce

the shock while curve the aft section of the lower surface to maintain the lift trimming

condition. Despite the overall agreements on the two optimized shapes, the detailed

designs on the upper and lower surfaces are different. The differences are also presented

in the Mach number contours and the pressure distributions as shown in Figure 6.16. The

130

(a) final mesh of Hessian adaptation

(b) final mesh of MOESS

Figure 6.14: Tandem RAE 2822 airfoils: final adapted meshes on the optimized designs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iterations

10−2

4× 10−3

6× 10−3

J
a
d
a
p
t

cost-based Hessian

MOESS

10 12 14 16 18
0.0036

0.0038

0.0040

0.0042

(a) objective convergence history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iterations

10000

15000

20000

25000

30000

D
e
g
re

e
s

o
f

fr
e
e
d

o
m

cost-based Hessian

MOESS

(b) mesh size evolution

Figure 6.15: Tandem RAE 2822 airfoils: objective convergence and mesh size evolution.

131

Table 6.6: Tandem RAE 2822 airfoils: computational cost comparison. In cost-based
optimization, the optimization tolerance is dynamically adjusted to be equal to the ob-
jective error estimate; the approximate values of the optimization tolerance in this table
are from the last iteration on each fidelity. Results are obtained on the same HPC cluster
(3.0 GHz Intel Xeon Gold 6154) using parallel runs with 36 cores and 36GB RAM.

Adaptation methods Optimization level Optimization tol (Drag count) CPU time (s)

cost-based Hessian
L1

δJadapt
≈ 1.733 8.727× 102

L2 ≈ 0.735 2.355× 102

L3 ≈ 0.136 2.686× 103

MOESS
L1

δJadapt
≈ 1.800 8.645× 102

L2 ≈ 0.196 9.329× 102

L3 ≈ 0.044 1.111× 103

two optimized designs both feature a complex shock structure on the second airfoil, while

the MOESS design has slightly stronger shocks. On the other hand, the normal shock

structure is preserved on the first airfoil for both designs but a weaker shock is found on

the MOESS design. The final objective values are summarized in Table 6.7, where we can

see that the MOESS design has a one count lower drag compared to the Hessian design.

Again, the objective error estimates are fairly accurate which can be used to evaluate

the accuracy even without running more expensive verification flow simulations on finer

discretizations.

Table 6.7: Tandem RAE 2822 airfoils: optimized objective on different meshes. The
“true” objective are obtained using order increment from p to p+ 1.

Final mesh DOF Jadapt Jadapt (“true”)
Cost-based Hessian 32988 3.717× 10−3 ± 1.365× 10−5 3.704× 10−3

MOESS 32742 3.607× 10−3 ± 4.396× 10−6 3.604× 10−3

Although some physical intuitions can still be drawn from the Mach number contours

and the pressure distributions, it is in general hard to assess the design just by looking

at the solutions as the physics becomes more and more complicated. On the other hand,

the objective value is used as the main metric for assessing the design quality. There-

fore, reliable objective predictions are essential for optimization that involves complicated

physics, such as the design for unconventional configurations. We expect the proposed

optimization method with error estimation and mesh adaptation to be more beneficial in

these problems.

132

(a) Mach number contour on the optimized design from Hessian adaptation

(b) Mach number contour on the optimized design from MOESS

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

1.5

−
c
p

RAE 2822

optimized (Hessian)

optimized (MOESS)

0.605 0.615
0.9

1.0

1.1

1.2

0.605 0.615

0.3

0.4

(c) first airfoil pressure distributions

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

optimized (Hessian)

optimized (MOESS)

(d) second airfoil pressure distributions

0.0 0.2 0.4 0.6 0.8 1.0

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08
RAE 2822

optimized (Hessian)

optimized (MOESS)

(e) initial and optimized airfoil shapes

Figure 6.16: Tandem RAE 2822 airfoils: comparison between the optimized designs from
Hessian adaptation and MOESS. Mach number contours has the same scale, [0.3, 1.35].

133

6.3.4 ADODG Case 2: Turbulent Transonic Optimization on RAE 2822

After showing success in inviscid transonic problems, we test our methods in a more

complicated turbulent case. The problem considered here is a fully-turbulent version of

the optimization problem studied in Section 6.3.2, which is proposed by ADODG as a

benchmark problem for two-dimensional airfoil optimization. RANS equations with the

SA turbulence model introduced in Chapter 2 are used as the flow governing equations.

For transonic turbulent simulations, anisotropic resolution is vital for efficiently resolving

both the boundary layers and possibly existing shocks. However, due to the linear velocity

profile in the viscous sub-layer, adaptations using Hessian-based anisotropy is in general

ineffective as the Mach number Hessian is close to zero in these regions. Therefore, only

MOESS with the cost-based optimization approach is used here.

With automatic error estimation and mesh adaptation, the starting mesh for the op-

timization can be fairly coarse even for turbulent simulations. We use the same starting

mesh as the one used in Section 6.3.2, which is shown in Figure 6.17 together with the

adapted meshes obtained during the optimization. For this turbulent case, the mesh adap-

tation always prioritizes the boundary layer over other flow features since it is the most

influential region for accurate output (both drag and lift) predictions. As a result, many

degrees of freedom are put into the boundary layer with anisotropic elements around the

airfoil boundary. Only after appropriately resolving the boundary layer, more refinements

are added to capture stream-wise features like shocks and the stagnation streamlines.

The mesh size and the objective value are collected at each optimization step as shown

in Figure 6.18. In the same fidelity, i.e., mesh cost level, we can see in Figure 6.18a that

the objective errors are close even for different designs since the meshes are optimized

on each of them. The initial design, i.e., the first optimization iteration, however, has

a much higher error than the other designs in the same fidelity mainly due to the much

stronger shock presented on the upper surface. Nonetheless, the accuracy is enough for the

optimizer to effectively update the initial design. As the shape optimization proceeds, the

objective error estimates are more stable with similar mesh DOF as the design approaching

optimal. At the highest fidelity, we expect only small changes in the shape, and the

objective error remains almost the same, which means that both the shape and the mesh

converge to an optimum. The initial and optimized airfoils are compared in Figure 6.19.

As depicted in Figure 6.19c, the optimization flattens the upper surface near the forward

section, while curves the lower surface and increases the thickness in the aft section.

The curvature reduction on the top surface is trying to smooth the flow acceleration

region to weaken the shock. The thickened lower surface and aft section are required to

maintain the lift and area constraints. This is also reflected in the Mach number contours

134

(a) initial mesh (b) mesh at the first iteration

(c) mesh at the 8th iteration (d) final mesh

Figure 6.17: ADODG case 2: the initial mesh and adapted meshes in the optimization.

135

shown in Figures 6.19a–6.19b where the initial strong shock is significantly reduced. As a

result, the strong discontinuity presented in the original pressure distribution is absent on

the optimized design in Figure 6.19d. Although some very weak shocks on the optimized

design can still be observed in both the Mach number contour and the pressure distribution

plots, those shocks are insignificant under the current optimization tolerance (tied to the

objective accuracy) and further optimization might be dominated by the discretization

errors as we have seen in Section 6.2.2. The final design yields a drag coefficient of cd,opt =

102.52±0.0275 counts, achieving a 45.17%±0.014% drag reduction compared to the initial

RAE 2822 airfoil which produces a drag of cd,0 = 186.97 counts 10. The overall behavior

is similar to the optimization results obtained in inviscid cases shown in Section 6.3.2,

however, the detailed optimized shape are very different due to different physical models

used. Therefore, in order to achieve a reliable design, both the discretization errors and

the modeling errors need to be quantified and controlled. The methods developed in this

work can assure the design quality as long as a reliable physical model is chosen during

the optimization; on the other hand, they can also be used to help identify the impact

of different physical models on the optimizations by well controlling the discretization

errors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iterations

0.010

0.012

0.014

0.016

0.018

0.020

J
a
d
a
p
t

optimization tolerance

objective

8 10 12 14 16

0.01025

0.01030

0.01035

0.01040

(a) objective convergence history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iterations

20000

30000

40000

50000

60000

70000

80000

D
e
g
re

e
s

o
f

fr
e
e
d

o
m

(b) mesh size evolution

Figure 6.18: ADODG case 2: objective convergence history and mesh size evolution for
different methods.

As this testing case is a fairly standard benchmark for viscous airfoil optimization,

we also compare our results to those reported by other research groups in Table 6.8. As

shown in the table, the drag values of the baseline RAE 2822 airfoil show large variance

in different results. The optimized airfoils exhibit even larger difference in the final drag

values. There are several reasons for the spread of the drag coefficients. First of all, the

10The initial drag coefficient is obtained with a much finer optimized mesh on the original RAE 2822
airfoil.

136

(a) RAE 2822 (b) optimized airfoil

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

optimized airfoil

(c) initial and optimized shapes

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

1.5

−
c
p

RAE 2822

optimized airfoil

(d) pressure distributions

Figure 6.19: ADODG case 2: local Mach number (0-1.3) and pressure distributions for
the initial and the optimized designs.

137

physical (turbulence) models and the numerical discretizations (discretization methods

and the meshes) are different among these results. Secondly, the geometry parametriza-

tion adopted in different optimizations differs, resulting in different design spaces in the

first place. Finally, the different mesh deformation methods and the various numerical

optimizers also contribute to the drag difference for the same optimization problem 11.

By better controlling the discretization errors (difference) in the outputs during the opti-

mization, the author believes the current optimization frameworks with adapted meshes

will be important for identifying other dominant components of a standard optimization

framework.

Result Mesh type Mesh Size Ns cd,0 cd,opt ∆cd
Present work Unstructured 13834? 16 186.97 102.52 -84.45
Bisson et al. [184] Structured 32193? 16 177.80 102.30 -75.50
Carrier et al. [185] Structured 153300† 10 202.50 111.10 -91.40
Lee et al. [186] Structured 47824† 34 234.44 131.81 -102.63
Poole et al. [187] Structured 98304? 10 174.30 93.00 -81.30
Yang and Ronch [188] Structured 24576? 20 241.24 151.35 -89.89
He et al. [189] Structured 131072? 40 194.40 108.91 -85.49

Table 6.8: Comparison of the drag coefficients (in drag counts) for RANS optimizations
of the RAE 2822 airfoil. The mesh sizes are reported in the number of elements (with
superscript ?) or the number of nodes (with superscript †) in different works.

6.4 Summary

In this chapter, we study the effects of discretization errors in optimization problems.

The optimization process strongly depends on the objective output accuracy and the

prescribed optimization tolerance. If not well-balanced, the design update will either be

severely polluted by the discretization error or be largely limited by the optimization tol-

erance, leading to accuracy or efficiency losses in the optimization. In most aerodynamic

optimizations, we use tight optimization tolerances without good control of the discretiza-

tion error during the optimization. As a result, the optimizer may arrive at a sub-optimal

design or even at an incorrect spurious optimum with inaccurate information provided

by the flow solver and gradient analysis, as shown in the test cases. Thus, discretization

error in the objective should be carefully controlled to ensure convergence to the “true”

optimal design at a prescribed optimization tolerance. Or alternatively, the optimization

11The problem formulations are actually different as some groups handle the constraints through penal-
ties while others use Lagrange multipliers.

138

tolerance should be set according to the objective error level to terminate the optimization

appropriately, avoiding unreliable design updates.

In order to achieve better accuracy and efficiency, we actively balance the discretiza-

tion error and the optimization tolerance, by either controlling the error to be below the

prescribed optimization tolerance, or adjusting the optimization tolerance according to the

objective error. Adjoint-based output error estimation and mesh adaptation are thus in-

troduced to provide a robust way of quantifying and controlling the objective errors. With

the variable fidelity offered by adapted meshes, multifidelity optimization frameworks are

proposed to efficiently integrate the error estimation and mesh adaptation with traditional

gradient-based optimization algorithms, using either an error-based or a cost-based ap-

proach. The cost-based approach is shown to be more efficient at a similar accuracy level.

By more frequent adaptation compared to the error-based approach, over-refinements are

avoided in areas that are important for intermediate designs but not the final design. In

terms of adaptation mechanics, MOESS has shown better accuracy and efficiency over

Hessian-based adaptation, especially for problems featuring strong anisotropy for both

the primal and adjoint solutions. This benefit can become more significant when higher

fidelity is required, or when highly anisotropic physics governs the system.

With more judicious considerations of the objective functions and constraints, and

additional design parameters, the new methods can provide realistic configurations in

practical design scenarios. The fidelity increase is presently driven by an optimization

tolerance or a computational cost that decreases or increases by a fixed factor each time,

or has to be specified by the user. However, for more practical problems, without a

priori knowledge of the objective convergence, an improved and automated fidelity in-

crease strategy should be developed to fulfill the potential of the present optimization

frameworks to increase the accuracy and efficiency for aerodynamic optimization prob-

lems. Furthermore, only mesh adaptation (h-adaptation) is considered here to control

the discretization error. More efficient adaptation mechanics such as approximation order

increment (p-adaptation), and combinations (hp-adaptation) can also be applied to the

proposed methods in the future.

139

CHAPTER 7

Extension to Multipoint Aerodynamic Optimization

Ideally, an aerodynamic design is expected to retain favorable performance over a

wide range of operating conditions. Optimization at one specific cruise condition as

shown in Chapter 6 can lead to mediocre performance on the overall mission profile,

and/or poor performance at off-design conditions. Therefore, aerodynamic optimization

in practice must take into account various flight conditions in both the objective and the

constraints [35, 190, 191, 192, 44], making the traditional setup for high-fidelity aerody-

namic optimization even more challenging. In order to achieve high accuracy for every

design point (flight condition), the single mesh used for all points has to be able to cap-

ture all of the important flow features over a wide range of operating conditions. The

designer, either expert in meshing or not, cannot reliably generate a mesh appropriate for

all cruise conditions. This situation can be even worse when the geometry is complex or

as the number of design points increases. Also, the resulting mesh may be quite fine, mak-

ing the computational cost needed for high-fidelity multipoint aerodynamic optimization

prohibitive in practice. On the other hand, numerical errors, if not quantified or well-

controlled in multipoint optimization, will be even more dangerous than in single-point

ones, as the output errors at different design conditions might accumulate during the

optimization. In order to aid practical multipoint aerodynamic design and to reduce the

risk of converging to incorrect optima, we extend the framework proposed in Chapter 5

to multipoint optimizations.

7.1 Multipoint Optimization Problem

7.1.1 Weighted-Sum Approach

Consider a multipoint optimization problem involving Nm design points, i.e., flight

conditions, which are typically specified by different Mach numbers. To combine the

140

objective outputs at each design, we use the weighted sum method in this work,

Jadapt
m =

Nm∑

i=1

Jadapt
m,i =

Nm∑

i=1

ωiJ
adapt
i (Ui,x) (7.1)

where Jadapt
m is the scalar composite objective used in the optimization, which is a sum

of the weighted objective component Jadapt
m,i at each design point. Jadapt

m,i is defined as the

objective at ith deign point Jadapt
i (Ui,x), weighted by ωi that is specified by the user or

from the quadrature rules. The weighted objective at each design point Jadapt
m,i depends

on the design x shared by all the design points and the individual flow state solutions

Ui ∈ RNf,i .

The trim conditions at each design point can be the same or can be specified separately,

such that

Rtrim
i (Ui,x) = Jtrim

i (Ui,x)− J̄trim
i = 0, (7.2)

where Jtrim
i ∈ RNt,i and J̄trim

i ∈ RNt,i are the trim outputs and their target values at ith

design point, respectively. The governing PDE constraints can be written as

Ri(Ui,x) = 0, (7.3)

in which the states at each each design point are independent, but are coupled through

the shared design variables x.

7.1.2 Adjoint and Design Equations

The Lagrangian function that augments the flow equations with trim constraints can

be written as

L =
Nm∑

i=1

ωiJ
adapt
i (Ui,x) +

Nm∑

i=1

λTi Ri(Ui,x) +
Nm∑

i=1

µTi Rtrim
i (Ui,x), (7.4)

where λi ∈ RNf,i and µi ∈ RNt,i are the Lagrange multipliers associated with the flow

equations and the trim constraints, respectively. The first-order optimality conditions are

141

obtained by setting the partial derivatives of L to zero,

∂L
∂x

=
Nm∑

i=1

ωi
∂Jadapt

i

∂x
+

Nm∑

i=1

λTi
∂Ri

∂x
+

Nm∑

i=1

µTi
∂Rtrim

i

∂x
= 0, (7.5)

∂L
∂Ui

= ωi
∂Jadapt

i

∂Ui

+ λTi
∂Ri

∂Ui

+ µTi
∂Rtrim

i

∂Ui

= 0, i = 1, ..., Nm; (7.6)

∂L
∂λi

= Ri(Ui,x) = 0, i = 1, ..., Nm; (7.7)

∂L
∂µi

= Rtrim
i (Ui,x) = 0, i = 1, ..., Nm. (7.8)

As we solve the flow equations for a given design x each time at every design point,

Eqn. 7.7 is always satisfied during the optimization. Again, the trim constraints can be

handled either the by the flow solver in the SBT approach or by the optimizer in the

OBT approach; for simplicity, we only discuss the former method here. A set of design

variables are dedicated to satisfying the trim constraints, denoted as trim variables xt,

dim(xt) = dim(Jtrim) = Nt, where Jtrim is a vector concatenated with the trim outputs

at different flight conditions, such that Nt =
∑Nm

i=1 Nt,i. Since now Eqn. 7.8 is satisfied by

the variation of the trim variables, Eqn. 7.5 breaks down into,

∂L
∂xs

=
Nm∑

i=1

ωi
∂Jadapt

i

∂xs
+

Nm∑

i=1

λTi
∂Ri

∂xs
+

Nm∑

i=1

µTi
∂Rtrim

i

∂xs
= 0, (7.9)

∂L
∂xt

=
Nm∑

i=1

ωi
∂Jadapt

i

∂xt
+

Nm∑

i=1

λTi
∂Ri

∂xt
+

Nm∑

i=1

µTi
∂Rtrim

i

∂xt
= 0, (7.10)

where xs is the set of active design parameters in the optimization. We can now choose

λi and µi at each point such that Eqn. 7.6 and Eqn. 7.10 are enforced after each flow

solve,

λTi = −
(
ωi
∂Jadapt

i

∂Ui

+ µTi
∂Rtrim

i

∂Ui

)(
∂Ri

∂Ui

)−1

= (ωiΨ
adapt
i + Ψtrim

i µi)
T ,

µT = [µT1 , ...,µ
T
Nm] = −

(
Nm∑

i=1

ωi
dJadapt

i

dxt

)(
dJtrim

dxt

)−1

.

(7.11)

There may exist a set of trim variables which can eliminate the coupling of the trim

constraints among different design points (i.e., make dJtrim/dxt diagonal), so that µi only

depends on the ith design point. In lift-constrained optimization problems discussed in

Chapter 6, angle of attack is such a choice. Eqn. 7.11 defines coupled adjoint variables λi

142

and µi, which can then be used to evaluate the total objective gradients with respect to

the active design variables, starting from Eqn. 7.9,

DJadapt
m

Dxs
=

∂L
∂xs

=
Nm∑

i=1

ωi
∂Jadapt

i

∂xs
+

Nm∑

i=1

λTi
∂Ri

∂xs
+

Nm∑

i=1

µTi
∂Rtrim

i

∂xs

=
Nm∑

i=1

ωi
∂Jadapt

i

∂xs
+

Nm∑

i=1

ωi(Ψ
adapt
i)T

∂Ri

∂xs
+

Nm∑

i=1

µTi

[
∂Rtrim

i

∂xs
+ (Ψtrim

i)T
∂Ri

∂xs

]

=
Nm∑

i=1

ωi

[
∂Jadapt

i

∂xs
+ (Ψadapt

i)T
∂Ri

∂xs

]
+

Nm∑

i=1

µTi

[
∂Jtrim

i

∂xs
+ (Ψtrim

i)T
∂Ri

∂xs

]

=
Nm∑

i=1

ωi
dJadapt

i

dxs
+

Nm∑

i=1

µTi
dJtrim

i

dxs

=
Nm∑

i=1

(
ωi
dJadapt

i

dxs
+ µTi

dJtrim
i

dxs

)
.

(7.12)

Eqn. 7.11 and Eqn. 7.12 follow the notation in Chapter 4: d(·)/dxt is the sensitivity

measured with respect to the trim variables xt while keeping the active design xs fixed,

i.e., in the trimming subproblem; d(·)/dxs represents the sensitivity with respect to the

active design variables with fixed trim variables. On the other hand, DJadapt
m /Dxs is the

total gradient of the composite objective with respect to the active design xs, which drives

the optimization.

Now the optimization problem has been reduced to finding an optimal design xs that

drives to zero the gradients in Eqn. 7.12. However, in a practical calculation, on a finite-

dimensional space, discretization errors appear in both the flow equations and the adjoint

equations, so that infinite-dimensional optimality cannot be guaranteed even when the

finite-dimensional optimality condition is satisfied. The following sections will focus on

extending the error estimation and mesh adaptation methods to multipoint optimization

problems to control the discretization errors.

7.1.3 Output Error Estimation

Normally, the error estimation is applied only to the output in which we are most

interested, i.e., the objective. However, our optimization problem requires simultaneous

solutions of the flow and adjoint equations. The numerical error of the trim outputs may

indirectly affect the calculation of the objective and hence the optimization result. To take

this effect into account, coupled adjoints should be used for error estimates as discussed

143

earlier in Chapter 4.

Consider a given design xs, again, on a coarse space H and a finer space h. The

error in the objective comes from both the inexact solution UH,i and the inexact trim

constraints satisfaction (inexact trim variables xt,H). We can estimate the error in the

composite objective using the linearization given by Eqn. 7.6 and Eqn. 7.10,

δJadapt
m =

Nm∑

i=1

ωi

[
Jadapt
H,i (UH,i,xt,H)− Jadapt

h,i (Uh,i,xt,h)
]

=
Nm∑

i=1

ωi

[
Jadapt
h,i (UH

h,i,xt,H)− Jadapt
h,i (Uh,i,xt,h)

]

=
Nm∑

i=1

ωi

[
∂Jadapt

i

∂Ui

δUi +
∂Jadapt

i

∂xt
δxt

]

= −
Nm∑

i=1

[
λTh,iδRh,i + µTh,iδR

trim
h,i

]

= −
Nm∑

i=1

[
λTh,iRh,i(U

H
h,i,xt,H) + µTh,iR

trim
h,i (UH

h,i,xt,H)
]
.

(7.13)

For the second term in Eqn. 7.13, we can expand the trim residual as

Rtrim
h,i (UH

h,i,xt,H) = Jtrim
h,i (UH

h,i,xt,H)− J̄trim
i

= [Jtrim
H,i (UH,i,xt,H)− J̄trim

i] + [Jtrim
h,i (UH

h,i,xt,H)− Jtrim
H,i (UH,i,xt,H)].

(7.14)

The first term above is automatically driven to zero because of the trimming on the coarse

space. For the second term, if the definition of the trim outputs does not depend on the

approximation space, then we have Jtrim
h,i (UH

h,i,xt,H) = Jtrim
H,i (UH,i,xt,H). Hence, the second

term in Eqn. 7.13 is often negligible, resulting a simpler form of the error estimate for the

144

composite objective,

δJadapt
m = −

Nm∑

i=1

λTh,iRh,i(U
H
h,i,xt,H)

= −
Nm∑

i=1

(ωiΨ
adapt
h,i + Ψtrim

h,i µh,i)
TRh,i(U

H
h,i,xt,H)

=
Nm∑

i=1

[
−ωi(Ψadapt

h,i)TRh,i(U
H
h,i,xt,H)− µTh,i(Ψtrim

h,i)TRh,i(U
H
h,i,xt,H)

]

=
Nm∑

i=1

(ωiδJ
adapt
i + µTh,iδJ

trim
i),

(7.15)

where δJadapt
i is the objective error and δJtrim

i stands for the trim output error, using

standard adjoint-based error estimates (Eqn. 3.43). The weighting by µh,i accounts for

the effects of trim output error on the objective calculations. More discussions on the

objective error estimation with trim conditions and its implementation can be found in

Chapter 4.

7.2 Mesh Adaptation

If we would like to use the same mesh for all of the design points, then Eqn. 7.15 can

be directly used to localize the error to each element, which then serves as the indicator

for mesh adaptation. However, this can be inefficient when the flow features change

significantly at different operating conditions, e.g., from subsonic to supersonic regimes.

To achieve certain accuracy in such cases, the mesh should be adapted in the areas

important for all of the design points, and hence unnecessary computational effort is

added to each flow solve if using a single mesh.

In the present work, we allow different meshes for different design points. The objective

error in Eqn. 7.15 is first localized to each design point as δJadapt
m,i = ωiδJ

adapt
i +µTh,iδJ

trim
i .

Then a common approach for obtaining an error indicator is to take the absolute value

of the elemental error contribution. When trim outputs are involved, we do not allow

cancellation between objective and trim output error indicators, so that the final error

indicator on element e at flight condition i, Ei,e, is given by

Ei,e = ωi|δJadapt
i,e |+ |µTh,i||δJtrim

i,e | = ωiEadapt
i,e + |µTh,i|E trim

i,e , (7.16)

where Eadapt
i,e ∈ R>0 and E trim

i,e ∈ RNt
>0 are the non-negative error indicators for the objective

145

output and the trim outputs, respectively.

At each operating condition, the mesh adaptation can be performed as a refinement

process to achieve certain accuracy, or as a modification or optimization process at a

given cost to improve the accuracy. We will denote the former approach as error-based

adaptation while the latter as cost-based adaptation, following the notation in Chap-

ter 5. Although each adaptation strategy has been well-studied for fixed configurations,

adaptation involving multiple operating conditions has seldom been investigated. In our

implementation, mesh adaptation for multipoint flow simulations is a two-stage process:

the desired error/cost is first allocated to each design point; common adaptation tech-

niques are then applied to each design point. The sections below describe the error/cost

allocation strategies and the adaptation methods adopted at individual design points.

7.2.1 Error/Cost Allocation for Multipoint Mesh Adaptation

In error-based mesh adaptation, a target error tolerance is specified to drive mesh

refinement. Thus as a first step, we would like to determine the error tolerance at each

design point. This high-level error split relies on an error convergence model that dictates

how the output errors behave with respect to changes in cost, usually measured by the

system degrees of freedom (DOF). Here, an a priori error-cost model is assumed,

|δJadapt
m,i | ∝ C

−ri/d
i , (7.17)

where Ci is the cost at the ith flight condition, ri is the corresponding output error

convergence rate, and d is the spatial dimension. The convergence rate at each design

point depends on the approximation order and the smoothness of the problem. We use

the ideal super-convergent rate of outputs in an adjoint-consistent setting to prevent too

aggressive refinement or coarsening (cost redistribution), though lower convergence rates

should be expected for under-resolved meshes.

We follow the idea of equally distributing the error-to-cost ratios [156, 193], i.e., the

marginal error reduction per cost increase. This is considered optimal as we can otherwise

further reduce the error without adding cost by just reallocating degrees of freedom among

different design points. For one adaptive iteration, the change in the error due to cost

redistribution is ∣∣∣δJadapt
m,i

∣∣∣ =
∣∣∣δJadapt,0

m,i

∣∣∣
(
Ci
C0
i

)−ri/d
, (7.18)

where the superscript 0 indicates values in the unadapted meshes. The marginal error-

146

to-cost ratio at each design point can be obtained by

∂|δJadapt
m,i |
∂Ci

= −ri
d

∣∣∣δJadapt,0
m,i

∣∣∣
(
Ci
C0
i

)−ri/d−1
1

C0
i

= −ri
d

∣∣∣δJadapt,0
m,i

∣∣∣
(
Ci
C0
i

)−ri/d 1

Ci

= −ri
d

|δJadapt
m,i |
Ci

, i = 1, ..., Nm.

(7.19)

Further, we define the desired error ratios f δi and cost ratios fCi as

f δi =
δJadapt

m,i

δJadapt
m,1

, fCi =
Ci
C1

, i = 1, ..., Nm. (7.20)

By equidistributing the error-to-cost ratios among different design points, the desired error

ratios f δi and cost ratios fCi can be determined using Eqn. 7.19. In this work, we further

assume identical convergence rates (ri = r, i = 1, 2, ..., Nm) if the same approximation

order is used and the meshes are well-adapted. Eqn. 7.19 then implies that the desired

error ratios and cost ratios are equal, and can be solved as

f δi = fCi =

∣∣∣∣∣
δJadapt,0

m,i

δJadapt,0
m,1

∣∣∣∣∣

1
r/d+1 [

C0
i

C0
1

] r/d
r/d+1

, i = 1, 2, ..., Nm. (7.21)

The desired ratios in Eqn. 7.21 can then guide the error redistribution in error-based

multipoint mesh adaptation, or cost redistribution in cost-based adaptation. Ideally,

specifying desired cost ratios and error ratios are equivalent if the a priori error-cost model

in Eqn. 7.17 is perfect, which is not the case in general. Furthermore, an error-based mesh

adaptation procedure in practice does not focus on matching exactly the target error, since

the a posteriori output error may deviate from the a priori estimation. Instead, an error

tolerance τi is specified in the error-based adaptation, and the adaptation (refinement)

reduces the a posteriori error until it is below the error tolerance, |δJadapt
m,i | ≤ τi. On

the other hand, the desired cost can be specified in cost-based adaptation such that the

adaptation redistributes the degrees of freedom on the computational mesh to reduce the

error while keeping the cost fixed. Therefore, cost-based and error-based adaptation with

equal desired ratios result in different meshes even if the same adaptation method is used.

• For cost-based multipoint mesh adaptation, given a fixed total cost C, the desired

147

cost at each design point is then redistributed as,

Ci =
fCi∑Nm
j=1 f

C
j

C. (7.22)

At each design point, the mesh adaptation then refines areas more important for

output prediction and coarsens elsewhere to keep the cost fixed (within some toler-

ance).

• In error-based multipoint mesh adaptation, given a total error tolerance τ of the

composite objective Jadapt
m , we first distribute the tolerance to each design point

according to the desired error ratios,

τi =
f δi∑Nm
j=1 f

δ
j

τ. (7.23)

At each design point, the mesh is refined until the objective error component is below

the error tolerance, |δJadapt
m,i | ≤ τi. Thus the cost at each design point Ci increases

as the mesh is adapted, although the local adaptation may support coarsening.

7.2.2 Mesh Adaptation at Individual Design Points

Similar to single point adaptation as discussed in Chapter 5, at each design point, the

mesh is adapted with either cost-based or error-based strategies. During the mesh adap-

tation, the error indicators in Eqn. 7.16 provide information on local refinement or coars-

ening. Meanwhile, the mesh elements are stretched according to the desired anisotropy,

which is either from solution Hessian in Hessian-based adaptation, or from a sampling

and optimization procedure in MOESS. More details of the adaptation mechanics can be

found in Chapter 4. We consider three adaptation methods here: cost-based and error-

based adaptation with Hessian-based anisotropy and standard cost-based MOESS. The

accuracy and efficiency of these adaptation approaches are compared in Section 7.4.

7.3 Optimization Algorithms

We consider again two-dimensional airfoil optimization here, in which the airfoil shape

and angles of attack are optimized to minimize the overall drag under a range of flight

conditions, subject to fixed lift coefficients and a minimum airfoil area. The optimization

setup follows the framework developed in Chapter 5. The lift constraints are treated as the

trimming constraints, and the angle of attack at each design point αi is chosen as the trim

148

variable, xt = [α1, α2, ..., αNm], to decouple the trim conditions at various points. During

each flow solve, the trim constraints are enforced by a trimming process as presented in

Chapter 4. On the other hand, the inequality area constraint is assumed to be measured

exactly and handled by the optimizer as it does not depend on the flow solutions. The

active design variables are the parameters controlling the airfoil shape, which in this work

are the coefficients of the Hicks-Henne basis functions [28, 172], xs = [a1, a2, ..., aNs] ∈ RNs .

Table 7.1 summarizes the multipoint aerodynamic optimization problem considered in this

work. During the optimization, the mesh deformation is performed using IDW or RBF

Table 7.1: Multipoint aerodynamic shape optimization problem

Function/Variable Description Quantity

Minimize
∑Nm

i=1 ωicd,i Weighted drag coefficients sum 1
With respect to xs Hicks-Henne basis function coefficients Ns

xt Angles of attack Nm

Subject to c`,i − c̄`,i = 0 Lift constraints Nm

A− Amin ≥ 0 Area constraint 1

interpolations as discussed in Chapter 5.

To avoid over-optimization and over-refinement, the objective error, including the

trim effects, is estimated to incorporate mesh adaptation and shape optimization. The

multifidelity algorithms proposed in Chapter 5, both error-based and cost-based, are

extended to multipoint problems and are summarized in Algorithm 7.1 and Algorithm 7.2,

respectively. Again, mesh adaptation is avoided during the line-search to ensure objective-

sensitivity consistency.

7.4 Results

As a simple demonstration of the proposed multipoint optimization frameworks, we

consider two-dimensional airfoil optimization problems in transonic flow regimes, over a

range of flight conditions. The goal of the optimization is to search for an optimal airfoil

shape and angles of attack to minimize the drag coefficients, subject to fixed lift trim

conditions and a minimum area constraint. We only consider the discretization errors

in drag and lift calculations, and the airfoil area measurements are assumed to be exact.

Furthermore, the trim constraint tolerances are always set to be sufficiently small to make

sure the sensitivity calculation in Eqn. 7.12 is accurate. The airfoil shape is parameterized

with 16 Hicks-Henne basis functions, and the design parameter vector includes both the

shape parameters and the angle of attack at each design point. The shape parameters

149

Algorithm 7.1 Optimization with error estimation and mesh adaptation (error-based)

input : initial design x0, initial coarse mesh Th, optimization tolerance levels
O1,O2, ...,On, safety factor η

output: adapted meshes at each design point Th,i
optimized design x∗ with controlled objective error δJadapt

m,h ≤ On
1 for l = 1, 2, ..., n do
2 set the total error tolerance as τl = ηOl

while not converged do . optimization algorithm
3 distribute the total error tolerance τl at each design point as τl,i, using Eqn. 7.23

for i = 1, ..., Nm do

4 while δJadapt
m,i > τl,i do

5 adapt the mesh Th,i with refinements . Hessian adaptation
6 update xt,l to meet trim constraints . trimming process

7 compute the objective component Jadapt
m,i and its error estimate δJadapt

m,i

8 end

9 end

10 update the composite objective Jadapt
m =

∑Nm
i=1 J

adapt
m,i

11 calculate the composite objective gradient DJadapt
m /Dxs,l, per Eqn. 7.12

12 update the active design xs,l with meshes Th,i fixed . line search

13 end
14 finish optimization at level l, xl+1 = xl
15 end

150

Algorithm 7.2 Optimization with error estimation and mesh adaptation (cost-based)

input : initial design x0, initial coarse mesh Th, cost levels C1, C2, ..., Cn, safety factor η
output: optimized mesh at each design point Th,i with total cost Cn

optimized design x∗ with optimized accuracy at given total cost Cn
16 for l = 1, 2, ..., n do
17 distribute the total cost Cl among various design points as Cl,i, using Eqn. 7.22

while not converged do . optimization algorithm
18 for i = 1, ..., Nm do
19 for j = 1, ..., Nadapt do
20 adapt the mesh Th,i with DOF redistribution . Hessian/MOESS
21 update xt,l to meet the trim constraints . trimming process

22 compute the objective component Jadapt
m,i and its error estimate δJadapt

m,i

23 end

24 end

25 update the composite objective Jadapt
m =

∑Nm
i=1 J

adapt
m,i

26 calculate the composite objective gradient DJadapt
m /Dxs,l, per Eqn. 7.12

27 set the optimization tolerance Ol = η
∑Nm

i=1 δJ
adapt
m,i

28 update the active design xs,l with meshes Th,i fixed . line search

29 end
30 finish optimization at level l, xl+1 = xl
31 end

are the active design variables in the optimization, while the angles of attack are used as

trim variables to enforce the trim constraints, as described in Section 7.3. Unstructured

triangular meshes and DG p = 2 approximation are used for the discretization. The airfoil

boundary is represented by cubic curved mesh elements. We first test our proposed meth-

ods on a two-point, inviscid airfoil optimization problem, following which a more practical

turbulent case including three flight conditions is considered. A detailed description of

the two cases are given in Table 7.2.

7.4.1 Two-Point Inviscid Transonic Airfoil Optimization

In this test case, the two-point optimization starts with an RAE 2822 airfoil and seeks

an optimal shape and angles of attack to minimize the weighted drag coefficient, subject

to fixed lift constraints and nondecreasing airfoil area. The two operating conditions

including the corresponding lift trim constraints are listed in Table 7.2.

Under the high lift trim condition, flow around the original RAE 2822 airfoil features a

strong shock on the upper surface, the location and strength of which vary depending on

the operating conditions, i.e., Mach number in this case. Without any priori knowledge

about the flow fields around the airfoil at each design point, a fairly fine mesh with

151

Table 7.2: Operating conditions for multipoint optimization problems

Case Point Weights wi Mach c` Reynolds number M − c` plot
7.4.1 1 0.50 0.70 0.750 –

0.7

0.725

0.75

0.775

0.8

c `

2 0.50 0.76 0.750 –

7.4.2 1 0.25 0.70 0.761 4.79× 106

0.7 0.71 0.72 0.73 0.74 0.75 0.76
Mach Number

0.65

0.675

0.7

0.725

0.75

c `

2 0.50 0.73 0.700 5.00× 106

3 0.25 0.76 0.646 5.21× 106

specific refinement around the airfoil is generally used in optimization. Effort can be

put into generating meshes suitable for capturing the shocks effectively, either based on

experience or output-based error estimates. However, this only helps the analysis on the

original shape. If the shock moves or its strength reduces as the optimization proceeds,

the specific resolution for the initial design is wasted. Particularly, we expect in this case

for the shape to be modified such that the shock strength is significantly weakened. Any

substantial refinement on the initial shock location will thus not effectively increase the

accuracy but instead add considerable computational cost to the optimization.

We test both the error-based and cost-based optimization frameworks as described in

Algorithm 7.1 and Algorithm 7.2, with various adaptation methods. For error-based op-

timization, we use error-based Hessian adaptation; while for the cost-based optimization,

both MOESS and cost-based Hessian adaptation are used. All these three optimiza-

tions start with the same initial mesh that was used in the single point optimization in

Chapter 6, which consists of 393 triangular elements and is shown in Figure 7.1a. In

the error-based optimization, a set of optimization tolerance levels is specified with an

ultimate tolerance of 0.02 drag counts, i.e., 2× 10−6. On the other hand, the cost-based

optimization starts with a fairly low cost level, and degrees of freedom are added once

the optimization converges at current cost level, until the final optimization tolerance is

around 0.02 drag counts. To compare with traditional methods, we also run fixed-fidelity

optimization on fixed meshes. As suggested by the single-point case considered in Chap-

ter 6, uniform refinements around the airfoil boundary might not lead to a good mesh for

152

this type of flow fields. We thus generate a fixed mesh with specific refinements around the

leading and trailing edges following the adapted meshes, while still keeping enough reso-

lution around the airfoil boundary. Again, the mesh has comparable DOF to the adapted

meshes. Moreover, a finer fixed mesh with around twice the cost is also generated to

further compare fixed-mesh optimization with our proposed methods. The optimization

tolerances on the fixed meshes are also set to be 0.02 drag counts. The meshes used in

these different optimizations are summarized in Figures 7.1b–7.1h. Only the coarse mesh

used in the fixed-fidelity optimization is shown for conciseness, as the finer one has more

elements but similar refinement patterns around the airfoil boundary.

The objective convergence and mesh evolution are shown in Figure 7.2. In Figure 7.2a,

we plot the objectives verses the aggregated total degrees of freedom, which are only ac-

cumulated at each optimization major iteration, i.e., not including the line search. We

see in the plot that the estimated discretization error of the objective is always above the

optimization tolerance in the fixed-fidelity (fixed-mesh) optimization. On the coarse fixed

mesh, the discretization error is large and sometimes even comparable to the objective

values. Although the objective error decreases as the finer fixed mesh is used, it is still

fairly large compared to the optimization tolerance. In these scenarios, the optimizer

may work on the numerical error instead of the physics to minimize the drag, leading

to inaccurate designs. On the other hand, discretization error is always controlled to be

below the optimization tolerance, or the optimization tolerance is adjusted to be equal to

the discretization error in the proposed methods. Furthermore, the variable-fidelity opti-

mizations with different adaptation methods all converge faster at the highest fidelity by

virtue of a better starting point obtained from the lower fidelity. Significant computational

resources can be saved with fast, low-fidelity optimizations.

We can also observe from the mesh evolution plot in Figure 7.2b that the mesh sizes,

if adapted, required to achieve similar accuracy on different operating conditions are dif-

ferent. For all of the mesh adaptation methods considered, the final mesh size for Mach

number of 0.70 is smaller than the one required for Mach number 0.76. Mesh adapta-

tion prevents unnecessarily fine meshes from being used for relatively simple operating

conditions. The distinction among these methods comes from the difference between

error-based and cost-based approaches, and the difference between Hessian adaptation

and MOESS. The error-based approach refines the mesh every time the error is above the

optimization tolerance, keeping it fixed otherwise, and hence it tends to over-refine areas

that are important for some intermediate designs but not necessary for the final design.

On the other hand, the cost-based approach always adapts the mesh while keeps the

cost fixed at the same fidelity, so that the redistribution of the degrees of freedom avoids

153

(a) initial mesh for variable-fidelity optimiza-
tion

(b) the coarse mesh for fixed-fidelity optimiza-
tion

(c) final mesh at M = 0.70 (error-based Hes-
sian adaptation)

(d) final mesh at M = 0.76 (error-based Hes-
sian adaptation)

(e) final mesh at M = 0.70 (cost-based Hes-
sian adaptation)

(f) final mesh atM = 0.76 (cost-based Hessian
adaptation)

(g) final mesh at M = 0.70 (MOESS) (h) final mesh at M = 0.76 (MOESS)

Figure 7.1: Two-point inviscid transonic airfoil optimization: meshes for variable-fidelity
and fixed-fidelity optimization.

154

104 105 106

Degrees of freedom

10−4

10−3

10−2

J
a
d
a
p
t

m

shaded area is optimization tolerance

fixed mesh (coarse)

fixed mesh (fine)

error-based Hessian

cost-based Hessian

MOESS

(a) objective convergence history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Iterations

0

10000

20000

30000

40000

50000

D
e
g
re

e
s

o
f

fr
e
e
d

o
m

fixed mesh (coarse)

fixed mesh (fine)

error-based Hessian, M=0.70

error-based Hessian, M=0.76

cost-based Hessian, M=0.70

cost-based Hessian, M=0.76

MOESS, M=0.70

MOESS, M=0.76

(b) mesh size evolution

Figure 7.2: Two-point inviscid transonic airfoil optimization: convergence history and
mesh size evolution for different methods.

over-refinement and improves the accuracy. If we look at the error-based Hessian adap-

tation and the cost-based Hessian adaptation (blue and green lines) in Figure 7.2, they

have very similar convergence and costs at low fidelities. However at the highest fidelity,

the error-based approach has more refinements, which are added for some intermediate

designs. Those extra refinements do not affect the final accuracy much as we can see

both methods have similar final accuracy, however, unnecessary computational costs are

added for the optimization. This suggests using the cost-based optimization framework

with cost-based adaptation methods. Although it requires several adaptive iterations with

fixed DOF at each major optimization iteration, it prevents extremely fine meshes from

being used at the highest fidelity, which is always the main overhead in the optimization.

In terms of adaptation methods, both using cost-based approach, MOESS benefits from

more appropriate anisotropy detection, resulting in lower cost and better accuracy. As

we can see in Figure 7.1f and Figure 7.1h, MOESS meshes tend to have more anisotropic

elements in the post shock locations, though they have similar refinement at the shocks. If

we look at the upstream region of these two meshes, as shown in Figure 7.3, the difference

is more evident: Hessian adaptation only has isotropic refinement along the stagnation

streamline since it is important for the output prediction but the Mach number field is

isotropic across it; However, MOESS is able to detect the anisotropy through sampling

and puts anisotropic resolution along the stagnation streamline. Therefore, we can see in

Figure 7.2 that at the low fidelities, with similar cost, MOESS achieves lower objective

error, hence better convergence and better design at the low fidelities. With a better start-

ing design, the optimization at the highest fidelity has smoother convergence, as the sharp

objective change at the highest fidelity that occurs in both error-based and cost-based

Hessian adaptation is not observed in MOESS. Since the flow solve in the optimization

155

always restarts from the solution on the previous design, MOESS converges faster and

consumes less CPU time compared to cost-based Hessian adaptation due to smaller design

changes and better mesh anisotropy alignment to both primal and adjoint features, even

though the aggregated total degrees of freedom are close. The computational cost saving

is reflected in Table 7.3. The proposed variable-fidelity optimization frameworks with

adapted meshes achieve substantial time savings compared to fixed-fidelity optimization

with fixed meshes. As mentioned, the cost-based algorithm outperforms the error-based

one with considerable time savings on the highest fidelity; cost-based optimization with

MOESS achieves the most time savings, around 2 times and 7 times speedup compared

to the optimizations on the coarse and fine fixed meshes, respectively.

Figure 7.3: Meshes around the stagnation streamline, the left mesh is from cost-based
Hessian adaptation, the right one is the MOESS adapted mesh, both at M = 0.76.

The initial and optimized airfoils are compared in Figure 7.4, while the final objective

values are collected in Table 7.4, in which the corresponding “true” objective values are

also obtained via adapted meshes on the final designs, with discretization error controlled

to be small compared to the final optimization tolerance. All of the optimizations flatten

the upper surface near the forward section, while curving and increasing the thickness at

the lower surface. The curvature reduction on the top surface smooths the flow accelera-

tion region to weaken the shock, while the thickened lower surface and curved aft section

are required to maintain the lift and area constraints. Therefore, the strong shocks are

significantly reduced at both operating conditions, as shown in the pressure distributions

in Figures 7.4a–7.4b. In the optimization runs with adapted meshes, areas around the

airfoil leading and trailing edges are significantly refined, and many elements are dedi-

cated to the shocks and the stagnation streamline. However, in the optimization with

fixed meshes, elements are not efficiently distributed, and areas that are important for

output predictions are not well-resolved, which as a result causes high objective error as

seen in Figure 7.2a. When the numerical error is too high, for example on the coarse

156

Table 7.3: Two-point inviscid transonic airfoil optimization: computational cost compari-
son. In cost-based optimization, the optimization tolerance is dynamically adjusted to be
equal to the objective error estimate; the approximate values of the optimization tolerance
in this table are from the last iteration on each fidelity. Computational time results are
obtained using parallel runs with 8 threads on the same machine (Intel Core i7-3770 3.40
GHz CPU with 16GB total RAM).

Optimization level Optimization tol (Drag count) CPU time (s)

Fixed-fidelity (coarse fixed mesh) L3 0.020 5.243× 104

Fixed-fidelity (fine fixed mesh) L3 0.020 1.639× 105

Variable-fidelity (error-based Hessian)
L1 2.000 7.880× 102

L2 0.200 7.153× 103

L3 0.020 3.668× 104

Variable-fidelity (cost-based Hessian)
L1

δJadapt
m

≈ 1.329 2.149× 103

L2 ≈ 0.130 8.241× 103

L3 ≈ 0.015 2.113× 104

Variable-fidelity (MOESS)
L1

δJadapt
m

≈ 0.822 2.334× 103

L2 ≈ 0.074 5.550× 103

L3 ≈ 0.007 1.630× 104

fixed mesh, the optimization converges to a noticeably different design compared to the

designs obtained from other optimizations, as shown in Figure 7.4c. Thus the “true”

objective value for the optimized design on the coarse fixed mesh is much higher com-

pared to designs obtained on the other meshes. In the optimization with the fixed fine

mesh, the discretization error is still high, but the optimization is able to converge to a

similar design compared to designs produced by optimizations with discretization error

control, as shown in Figure 7.4c. Although the “true” objective value is also close to

(still slightly higher) the objective values of our proposed methods with mesh adaptation

(the difference among these methods is below or comparable to the optimization toler-

ance, which means that the optimization on these meshes converges correctly), the final

objective value reported on the fixed mesh is far from accurate for practical design and

the cost is extremely high compared to our proposed methods, which is observed in both

Table 7.3 and Table 7.4. In contrast, the proposed methods with mesh adaptation are

able to obtain a reasonable design, and the associated error estimation is also sufficiently

accurate to provide confidence in the final design and the computed output quantities.

To help better understand the pressure distribution in Figures 7.4a–7.4b, Mach num-

ber contours at each design point are shown here in Figures 7.5–7.6. As we can see in

Figure 7.5, for the lower Mach number considered, all of the optimized designs reduce the

distance between the two original weak shocks and push them towards the leading edge.

The final distance between the two weak shocks is a little larger on the design obtained

157

from the fixed coarse mesh compared to the designs from other meshes, resulting in a

higher drag in this flight condition. The shock location and strength are pretty much

the same in the other designs. For the higher Mach number operating condition in Fig-

ure 7.6, all of the final designs feature a complex shock structure near the trailing edge.

The shock locations and the shock structures are all similar, except that an extra weak

shock is present after the complex shock structure on the fixed coarse mesh design, again,

resulting in a higher drag compared to other designs.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

°1.0

°0.5

0.0

0.5

1.0

1.5

°
c

p

RAE 2822

optimized (coarse fixed mesh)

optimized (fine fixed mesh)

optimized (error-based Hessian)

optimized (cost-based Hessian)

optimized (MOESS)

(a) pressure distribution at M = 0.70

0.0 0.2 0.4 0.6 0.8 1.0
x/c

°1.0

°0.5

0.0

0.5

1.0

1.5

°
c

p

RAE 2822

optimized (coarse fixed mesh)

optimized (fine fixed mesh)

optimized (error-based Hessian)

optimized (cost-based Hessian)

optimized (MOESS)

(b) pressure distribution at M = 0.76

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

optimized (fixed coarse mesh)

optimized (fixed fine mesh)

optimized (error-based Hessian)

optimized (cost-Based Hessian)

optimized (MOESS)

(c) initial and optimized shape

Figure 7.4: Two-point inviscid transonic airfoil optimization: pressure distribution for the
initial and optimized designs.

7.4.2 Three-Point Turbulent Transonic Airfoil Optimization

Another problem considered here is a more sophisticated fully-turbulent case. We

set up a three-point optimization problem, analogous to minimizing the integrated drag

coefficients over a range of Mach numbers at a fixed aircraft weight and altitude. The

158

(a) initial design (b) final design with fixed coarse mesh

(c) final design with fixed fine mesh (d) final design with error-based Hessian adap-
tation

(e) final design with cost-based Hessian adap-
tation

(f) final design with MOESS

Figure 7.5: Two-point inviscid transonic airfoil optimization: Mach contours at M = 0.70.
The color limit is [0, 1.28] for all of the contours.

159

(a) initial design (b) final design with fixed coarse mesh

(c) final design with fixed fine mesh (d) final design with error-based Hessian adap-
tation

(e) final design with cost-based Hessian adap-
tation

(f) final design with MOESS

Figure 7.6: Two-point inviscid transonic airfoil optimization: Mach contours at M = 0.76.
The color limit is [0, 1.4] for all of the contours.

160

Table 7.4: Two-point inviscid transonic airfoil optimization: results on different meshes.

Final mesh DOF Jadapt
m Jadapt

m (“true”)
Fixed mesh (coarse) 56040 1.098× 10−4 ± 6.778× 10−5 5.031× 10−5

Fixed mesh (fine) 103716 5.366× 10−5 ± 1.045× 10−5 4.389× 10−5

Error-based Hessian 66630 4.466× 10−5 ± 1.311× 10−6 4.338× 10−5

Cost-based Hessian 51324 4.513× 10−5 ± 1.504× 10−6 4.383× 10−5

MOESS 49116 4.333× 10−5 ± 7.202× 10−7 4.278× 10−5

optimization again starts with the RAE 2822 airfoil, and seeks an optimal shape and

angles of attack to minimize the composite drag coefficients with fixed lift constraints and

non-decreasing airfoil area; the details of the case setup are given in Table 7.2.

For turbulent flow simulations at high Reynolds numbers, one of the key flow features

is the thin boundary layer. Due to the linear velocity profile in the viscous sub-layer,

Hessian-based mesh adaptation is usually inefficient since the Mach number Hessian is

close to zero within this region. Therefore, only MOESS with cost-based multifidelity

optimization is used in this case. The starting and final mesh at each flight condition

are compared in Figure 7.7. At all of the flight conditions considered, MOESS is able to

effectively detect strong directional flow features in both the primal and adjoint solutions,

putting highly-anisotropic elements around the airfoil boundary, at shock locations on the

top surface, along the stagnation streamline and also near the wake region.

The objective and mesh size are collected at each optimization step as shown in Fig-

ure 7.8. In the convergence plot, we can see that the composite objective errors are close

even for different designs at the same optimization fidelity, as the total degrees of freedom

are optimally distributed among different flight conditions, and the meshes are optimized

individually at each of them. The degrees of freedom assigned to the design point at

Mach number of 0.73 are consistently higher than at the other two points, mainly due to

the higher weight used during the optimization. On the other hand, the cost distribution

between Mach number of 0.70 and 0.76 changes as the design varies. As the optimization

progresses, the meshes get refined and optimized, and more detailed design improvement

is then made with smaller objective error and tighter optimization tolerance, i.e., both

the design and meshes converge to the optimum.

Figures 7.9a–7.9c shows the initial and final pressure distributions at each design point.

The corresponding final airfoil shape is shown in Figure 7.9e. As in the inviscid case, the

upper surface of the airfoil is flattened, while more curvature is added to the lower surface

aft section. As we can see in the pressure distribution plots, both the location and the

strength of the original strong shock at each design point are modified. The optimizer

161

(a) initial mesh (b) final mesh at M = 0.70

(c) Final mesh at M = 0.73 (d) final mesh at M = 0.76

Figure 7.7: Three-point turbulent transonic airfoil optimization: initial mesh and final
meshes during the optimization.

1 2 3 4 5 6 7 8 9 10 11 12 13
Iterations

0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

J
a
d
a
p
t

m

optimization tolerance

objective

6 8 10 12

0.01070

0.01075

0.01080

0.01085

0.01090

(a) objective convergence history

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Iterations

20000

30000

40000

50000

60000

70000

80000

90000

100000

D
e
g
re

e
s

o
f

fr
e
e
d

o
m

MOESS mesh for M=0.70

MOESS mesh for M=0.73

MOESS mesh for M=0.76

(b) mesh size evolution

Figure 7.8: Three-point turbulent transonic airfoil optimization: objective convergence
history and mesh size evolution for different methods.

162

weakens the shock at both Mach numbers of 0.73 and 0.76, while slightly strengthens the

shock at the Mach number of 0.70, resulting in a significant reduction in the composite

drag coefficient as shown in Figure 7.8a. These changes are also well-reflected in the

Mach number contours on the initial and optimized designs as shown in Figure 7.10. The

drag divergence curves for the original RAE 2822 airfoil and the optimized design around

the nominal flight conditions are presented in Figure 7.9d. Despite some sacrifice in the

performance at low cruise speeds, the new design achieves significantly lower drag values

for Mach numbers above 0.73 and is able to maintain good performance over a much

wider range of Mach numbers compared to the original design.

7.5 Summary

In practical aerodynamic design processes, the optimization problem has to be posed

such that a range of operating conditions, including off-design points, are considered in

the objective as well as the constraints. To ensure convergence to the “true” optimal

design, the numerical error at each design point has to be carefully controlled. As the

flow conditions involved can vary dramatically, a priori meshes appropriate for all the

design points can be hard to generate and are generally not sufficient for the requirements

of high-fidelity optimization.

In this chapter, we extend the multifidelity optimization framework with output-based

error estimation and mesh adaptation developed in Chapter 5 to multipoint optimization

problems. The proposed frameworks can considerably facilitate the optimization setup

and accelerate the design process. The designer only needs to input an initial mesh, which

can be fairly coarse and easy to generate. The mesh adaptation (fidelity increase) is then

tightly coupled with the optimization algorithm either with an error-based or a cost-based

strategy. The variable-fidelity optimization framework driven by mesh adaptation is ca-

pable of preventing over-optimizing and over-refining, as shown in the test cases. Similar

to the single point optimization problem, cost-based optimization approach outperforms

the error-based one. In addition, MOESS is in general more efficient than Hessian-based

adaptation by more effective anisotropy detection. This benefit can become more sig-

nificant when higher fidelity is required, or when highly anisotropic physics governs the

system.

163

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

1.5

−
c
p

RAE 2822

optimized airfoil

(a) pressure distribution at M = 0.70

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

optimized airfoil

(b) pressure distribution at M = 0.73

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

−
c
p

RAE 2822

optimized airfoil

(c) pressure distribution at M = 0.76

0.68 0.70 0.72 0.74 0.76 0.78
Mach number

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

c
d

c` = 0.761, Re = 4.79M

c` = 0.700, Re = 5.00M

c` = 0.646, Re = 5.21M

RAE 2822

optimized airfoil

(d) drag divergence curves

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

z
/
c

RAE 2822

optimized airfoil

(e) Initial and optimized shapes

Figure 7.9: Three-point turbulent transonic airfoil optimization: pressure distribution for
the initial and optimized designs.

164

(a) M = 0.70, initial design (b) M = 0.70, optimized design

(c) M = 0.73, initial design (d) M = 0.73, optimized design

(e) M = 0.76, initial design (f) M = 0.76, optimized design

Figure 7.10: Three-point turbulent transonic airfoil optimization: Mach contours. The
color limit is [0, 1.4] for all of the contours.

165

CHAPTER 8

Mesh Adaptation Acceleration Techniques Based on

Machine Leaning

As we have seen in Chapter 6 and Chapter 7, incorporating output-based error esti-

mation and mesh adaptation with aerodynamic optimization provides a way of improving

the optimization accuracy and efficiency. Although MOESS has shown benefits of opti-

mally distributing the mesh DOF and aligning the mesh to desired solution anisotropy, it

requires a local sampling process for the unknown convergence rates which is computa-

tionally more complicated. Depending on the sampling implementation, it can be more

expensive than Hessian-based adaptation although better mesh efficiency is in general

found in MOESS meshes. For example, the sampling algorithm involves non-trivial mesh

operations (refinement options as shown in Figure 4.6) for its implementation, or in this

work requires complex element-local projections. On the other hand, if the adjoint and

primal are re-solved (not in this work) for the proposed sampling cuts, the computation

cost also grows fast. Hessian-based anisotropy detection, on the other hand, is com-

putationally less intensive as it relies on readily available Hessian information, yet the

performance is not generally optimal for a wide range of flow fields and approximation

orders.

In this chapter, we investigate the idea of using a machine-learning approach to predict

the optimal mesh anisotropy. The goal is to bypass the sampling and optimization process

but still achieve similar performance as MOESS. Instead of relying on the generalized

error convergence model (Eqn. 4.57) and the optimization process proposed in MOESS, a

regression-based surrogate model is constructed by machine learning techniques to directly

predict the optimal anisotropy. Without loss of generality, MOESS can also be viewed as

a regression-based model, but is built on the fly during the simulation and uses limited

amount of data. In the meantime, the model performance is limited by the mathematical

form of the proposed error convergence model. By using more advanced machine learning

166

based regression models, we increase the model power despite the lack of interpretability.

In addition, the model is trained before the simulation with a large data set such that no

further sampling or optimization is needed in the adaptation. Also, due to the increase

amount of data used when building the model, the resulting model is less biased to local

irregular behaviors, such as adjoint or primal singularity.

Machine learning techniques have the potential to accurately and efficiently model

responses of highly-nonlinear problems over a wide range of input features. In particular,

we uses artificial neural networks (ANNs) in this work. ANNs are a popular machine

learning technique for modeling complex nonlinear mappings between input parameters

and target outputs. They emulate the biological systems through connected neurons that

are activated under sufficiently strong input activation. Although originally popularized

in computer vision and pattern recognition [194], they have received much attention for

decades in computational science and engineering, primarily for interpolation and data-

driven modeling [195, 196, 197, 198, 199], both of which involve mapping input features

to output targets 1. Despite the fact that physical constraints can be added when con-

structing the ANN map (often termed physics-informed network [200, 201]), it does not

contain the physics of the problem by itself, i.e., the underlying physics cannot be directly

extracted from the model. Nevertheless, the map can effectively “learn” relationships

between inputs and outputs that may be difficult to discern mathematically from first

principles.

The rest of this chapter is adapted from [202]. We first introduce the new machine

learning approach for identifying mesh anisotropy in Section 8.1, followed by the model

training details in Section 8.2. Section 8.3 presents the deployment results of the pro-

posed model and compare the performance with standard MOESS and Hessian-based

adaptation.

8.1 Machine-Learning Anisotropy Detection

As an alternative to mesh subdivision sampling and regression to determine the

anisotropy information as shown in Section 4.4.4, we present an approach that uses a

neural network to determine anisotropy from relevant features of the primal and adjoint

solutions. A key choice in the design of the neural network is the set of input features

from which the target anisotropy information can be detected and hence the desired

adapted mesh can be obtained. For generality across problems, the input features should

1We follow the convention of machine learning here, where the network inputs are denoted as features
and the outputs are referred to as targets. These terms will be used interchangeably for the rest of the
thesis.

167

be insensitive to scaling of the problem and the choice of physical units. In the Hessian-

based anisotropy detection approach, the Mach number Hessian matrix provides such

information from the primal solution. In MOESS, both the primal and adjoint solutions

are combined via sampling of the adjoint-weighted residual to produce the most efficient

anisotropy distribution. Note that in both methods, the element size relies on localized

output error estimate, either through direct scaling of the solution Hessian matrix in

Hessian-based adaptation, or through the step matrix (trace part) applied on the current

mesh metric in MOESS.

The output error estimation formula involves both the primal (via the residual) and the

adjoint (as a weight) solutions, and we therefore seek to incorporate both sets of features

into the anisotropy measure. Our choice for the features is motivated by the success

of the Mach number Hessian, even for high-order solutions. Properly normalized, the

Hessian matrix provides information about the relative importance of principal orthogonal

directions computed from a scalar field. In order to not exclude any primal or adjoint

information, we take as features the Hessian matrices computed from all primal and

adjoint state components.

8.1.1 Primal and Adjoint Features

For element e, denote by Hu
k and Hψ

k the Hessian matrices of the kth state and adjoint

variables, respectively,

[Hu
k]i,j =

∂u2
k

∂xi∂xj
,
[
Hψ
k

]
i,j

=
∂ψ2

k

∂xi∂xj
, i, j ∈ [1, ..., d], (8.1)

where k ∈ [1, . . . , s] ranges over the state rank. We do not include the subscript e to

denote that this is an elemental quantity, as this will be assumed for all calculations in

this section. The second derivatives in the Hessian are computed from the polynomial

approximation of the state inside element e. When the approximation order is p = 2,

the Hessian is uniquely defined for the entire element. To obtain a unique definition for

orders p > 2, we project the field, via least squares, to p = 2. For p < 2, which we do

not consider in this work, we would obtain a p = 2 field using patch reconstruction from

neighboring elements.

In two spatial dimensions, to normalize the Hessian, we compute the aspect ratio (AR)

and direction of the first eigenvector,

AR =
√
λH2 /λ

H
1 , θ = arg(~v1), (8.2)

168

where λH1 ≤ λH2 are the Hessian eigenvalues and ~v1 is the eigenvector corresponding to

λH1 . The normalized elemental Hessian metric, for either a primal or adjoint field k, is

then defined as

Hk =

[
λ1 cos2 θ + λ2 sin2 θ (λ1 − λ2) sin θ cos θ

(λ1 − λ2) sin θ cos θ λ1 sin2 θ + λ2 cos2 θ

]
, where λ1 =

1

AR
, λ2 = AR. (8.3)

Note that this matrix does not encode sizing, which is not a meaningful quantity from

the Hessian matrix in the context of output-based adaptation, and hence has only two

independent quantities (e.g. AR and θ). This gives a total of 2s primal features and 2s

adjoint features for use in the machine-learning algorithm.

Inputs into a neural network should often be normalized such that the training con-

vergence is not significantly slowed down by extreme cases, e.g., elements of large aspect

ratio. In addition, care must be taken when using an angle as an input, due to the peri-

odic nature of trigonometric functions, such as sine and cosine functions. To address both

problems, we do not use the normalized Hessian metric as defined in Eqn. 8.3 directly

as an input. Nor do we use AR and θ, which can have very different scales. Instead,

we take the natural logarithm of the normalized Hessian metric, which is equivalent to

a step matrix Sk computed relative to the identity matrix. Since the eigenvalues of Hk

are multiplicative inverses, the resulting step matrix has zero trace and hence only two

independent components in two dimensions,

Sk = log(Hk) =

[
− log(AR) cos(2θ) − log(AR) sin(2θ)

− log(AR) sin(2θ) log(AR) cos(2θ)

]
. (8.4)

We use the first row values as the independent components, i.e., input features for the

network:

Sk,1 ≡ (Sk)1,1, Sk,2 ≡ (Sk)1,2. (8.5)

These two values per scalar field result in a total of 4s inputs from the primal and adjoint

anisotropy information.

8.1.2 Error Indicator Features

In addition to the primal and adjoint features, state-component contributions to the

error indicator can also inform the element anisotropy calculation. The elemental error

indicator E in Eqn. 3.48 (again, we drop the subscript e for conciseness) is a scalar that is

already used to determine element size. However, for systems of equations, this indicator

169

can be broken down into contributions from each equation,

E =
s∑

k=1

Ek, Ek =
∣∣ΨT

h,kRh,k(U
H
h)
∣∣, (8.6)

where k again indexes the equations (state components), such that Ek, Ψh,k and Rh,k

represent the local error indicator, adjoint and residual vectors respectively associated

with the kth equation. The relative magnitudes of Ek can then be incorporated into the

anisotropy calculation, as these values could arguably influence the importance of Hessian

anisotropy information from the various state and adjoint components. Note that we do

not assume a direct weighting by these indicators, but rather let the neural network

determine the effect of these values on the output. For input into the neural network, we

define the normalized error contributions as

Ek ≡ Ek
(

s∑

k=1

E2
k

)−1/2

. (8.7)

8.1.3 Surrogate Model Using Neural Networks

8.1.3.1 Artificial Neural Networks

The idea of ANN is to emulate the response of neurons to input stimulation signals,

and thus they were also referred to as multi-layer perceptrons (MLPs) in the early days

of machine learning and neural science [203]. A simple single-layer 2 ANN is shown in

Figure 8.1a. It receives an input vector x (input layer) and applies an affine transformation

followed by a nonlinear activation function (hidden layer) to produce an output vector y

(output layer). The map between x and y can be written as

y = f(Θouth), h = σ(z), z = Θinx,

Θinx ≡Winx + bin, Θouth ≡Wouth + bout.
(8.8)

z is an affine transformation of the input x with parameters Θin, which contains both

the linear map weights Win ∈ Rdim(z)×dim(x), and a translation or bias term bin ∈ Rdim(z).

A nonlinear activation function σ then maps z element-wise to the hidden units h, often

referred to as the hidden neurons. The nonlinear activation σ provides the power of

modeling complex phenomena and are often defined a priori, such as sigmoid or rectified

linear unit (ReLU) [204] functions. From the hidden layer to the output, we only showed

2We only count the hidden layer here.

170

an affine map Θout in Figure 8.1a. However, one more nonlinear or linear activation f

can also be applied.

The complexity and approximation power of a network increase as the number of

neurons increases. One can also stack the hidden layers to increase the approximation

capacity, resulting in a multi-layer network. Deep ANNs are usually obtained by both

increasing the number of hidden layers and the number of neurons in each layer, as shown

in Figure 8.1b. For a neural network of L hidden layers, the corresponding model can be

written as,

h1 = σ(Θ1x) ∈ RN1 ;

hl = σ(Θlhl−1) ∈ RNl , l = 2, 3, ..., L;

y = f(ΘL+1hL).

(8.9)

The number of hidden layers L, and the dimension of each hidden layer Nl, are hyper-

parameters of the network, which can be fine-tuned to achieve higher efficiency and better

performance. The network trainable parameters (weights and bias) Θl, l = 1, ..., L+1, are

obtained by minimizing an objective function, often called the loss function, measuring

the deviation between the model outputs and the target values from the observed data.

Input layer

Hidden layer

Output layer

(a) single-layer ANN

Input layer
Hidden layers

Output layer

(b) stacked deep ANN

Figure 8.1: Structures of artificial neural networks (ANNs).

8.1.3.2 Proposed Network Architectures

In this work we consider artificial neural networks for mapping the input primal and

adjoint features into the desired output, which contains the optimal mesh anisotropy.

Suppose we have an optimal mesh, it can then be represented by a mesh-implied metric

field Mout which encodes both the element size and stretching information. Following the

idea presented in Section 8.1.1, we first drop the sizing information to get the normalized

171

mesh metric, Mout; then the step matrix of normalized mesh metric with respect to the

identity metric, i.e., the natural logarithm of Mout, is used to encode the mesh anisotropy.

Thus the target output of the neural network, yout, is defined as

Sout = log
(
Mout

)
⇒ yout = [(Sout)1,:]

T . (8.10)

Again, the step matrix Sout is trace-free, thus only the first row of the step matrix is used

to define the output vector.

The network architectures considered are simple ANNs consist of one or two hidden

layers, h1, (h2), between the input layer, i.e., the features, x, and the output layer, i.e.,

the targets yout. Four network configurations, labeled as network A-D, are tested in this

work. They differ in the size of the input layer and the number and size of the hidden

layers, which are compared in Table 8.1. The inputs to all networks contain the primal

and adjoint Hessian information, through the 4s values in Suk,1,: and Sψk,1,:. Networks A-C

also include the s relative errors, Ek in the input. Networks A and D both have one hidden

layer of 10s neurons, network B has two hidden layers of 40s neurons each, and network

C has one hidden layer of 2s neurons. The associated numbers of weights and biases

are given in the last two columns of Table 8.1. In summary, network A is the baseline

network, B is a large/fine network, C is a small/coarse network, and D is the baseline

without the relative error indicators.

Table 8.1: Four neural network architectures for anisotropy detection.

Network Input Layer Hidden Layers # Weights # Biases

A x0 ∈ {Suk,1,:,Sψk,1,:, Ek} ∈ R5s x1 ∈ R10s 50s2 + 20s 10s+ 2

B x0 ∈ {Suk,1,:,Sψk,1,:, Ek} ∈ R5s x1 ∈ R40s,x2 ∈ R40s 1800s2 + 80s 80s+ 2

C x0 ∈ {Suk,1,:,Sψk,1,:, Ek} ∈ R5s x1 ∈ R2s 10s2 + 4s 2s+ 2

D x0 ∈ {Suk,1,:,Sψk,1,:} ∈ R4s x1 ∈ R10s 40s2 + 20s 10s+ 2

The parameters associated with the network consist of all of the weights and biases,

Θl, l = 1, 2, 3. The values of these parameters are determined using an optimization

procedure, that minimizes the mean squared error loss function between predicted and

actual output layer values. The actual values come from training data, which are obtained

from multiple MOESS iterations on prototypical cases. Each MOESS iteration produces

one “training point” for each element of the mesh, so for meshes with many elements, a

large amount of data can be obtained with a relatively small number of MOESS iterations.

Once a network is trained, it is implemented in the adaptive code as a replacement for

the Hessian-only metric anisotropy and stretching calculation in the output-based mesh

172

adaptation method described in Section 4.4.3. More specifically, we use the same adapta-

tion code used for Hessian-based adaptation in Section 4.4.3, but the desired mesh metric

is now directly from the network model rather than Mach number Hessian. However, due

to the normalization we had for the input and output of the network, it only contains the

mesh stretching while the element sizing still follows Section 4.4.3.1. Figure 8.2 illustrates

the calculation process from the features: primal, adjoint, and error indicators, to the

desired element anisotropy, encoded by the metric Mout presented on the lower-left in the

figure. This metric then replaces the Mach Hessian in an otherwise equivalent adaptive

procedure presented in Section 4.4.3.

adjoint features

error indicator features

primal features

H
u

k

Neural networkyoutSoutMout

Suk,1,:

H
ψ

k

Sψk,1,:

uρ Hessian uρu Hessian uρv Hessian uρE Hessian uρν̃ Hessian

ψρ Hessian ψρu Hessian ψρv Hessian ψρE Hessian ψρν̃ Hessian

Eρ Eρu Eρv EρE Eρν̃ Ek

Figure 8.2: Flowchart of the neural-network implementation.

8.2 Neural Network Training

Several prototypical aerodynamic flow cases are run to provide training data for the

anisotropy prediction neural network. Table 8.2 describes these cases and includes figures

of the primal and adjoint solutions, and of the optimized meshes. All cases are two-

173

dimensional and use the RANS-SA equations as presented in Section 2.3. A variety of

flow Mach numbers are included, ranging from subcritical to supersonic. The Reynolds

numbers are representative of aircraft flight conditions, O(106). Force outputs, drag and

lift, are considered for error estimation and adaptation. In some cases, for a given flow

condition, both outputs yield two different adaptation sequences.

Adapted meshes are generated at a chosen target degree-of-freedom cost using MOESS,

at a solution approximation order of p = 2 and separately at p = 3 (for use in the results

in Section 8.3.6). The meshes for the different cases are not all made to be of the same

size, but the number of adaptive iterations collected is chosen such that the total amount

of training data (product of mesh size and number of iterations) is approximately the

same among the cases. Data collection begins once the mesh size and outputs stabilize

following initialization of MOESS iterations with a user-generated, sub-optimal mesh.

Specifically, data from the first ten MOESS iterations are discarded before collection.

The input data, which consist of the normalized primal and adjoint variable Hessian

matrices, are computed from the current-space primal and adjoint solutions for each

element. For p = 2, these matrices are constant inside elements, whereas for p > 2, the

matrices would be averaged across the element interiors. The ground truth for the output

data are computed using the normalized mesh-implied metric, since we are using MOESS

to generate the meshes, converted to a step matrix via a natural logarithm as discussed

in Section 8.1.3.2.

The total number of training data points (elements) over all cases and adaptive it-

erations is 121,840. These data are randomized and split 70%/30% into training and

validation categories. The training data are used to drive the optimization, whereas the

validation data are used to monitor the loss on untrained data. The networks proposed

in Table 8.1 are all implemented in TensorFlow [205] and the network parameters are

optimized (trained) using the adaptive moment (Adam) estimation algorithm [206]. The

training data are broken into mini-batches of size 1000 for the optimizer, and the learning

rate is set to 0.001. Several tens of thousands of optimization iterations typically lead to

a stabilization of the mean-squared error, as shown in Figure 8.3. Typically, an order of

magnitude drop in the loss is observed, without a significant difference between training

and validation data loss. This indicates that we are not over-fitting the data, which would

be difficult to do with the small neural network size presently considered. Furthermore,

the results of the training were not found to be overly sensitive to the choices of the

mini-batch size or the learning rate.

Training of the networks yields weight matrices and bias vectors. Interpretation of

these values is not straightforward, especially for large networks. However, some insight

174

Table 8.2: Neural network training cases.

Flat plate: M∞ = 0.2, 0.5, Re = 105, 106, output = drag (images scaled 100x vertically)

Mach contours drag adjoint (x-momentum) Optimized mesh (700 elem)

NACA 0012: M∞ = 0.8, α = 1.25◦, Re = 5× 106, outputs = drag, lift

Mach contours lift adjoint (x-momentum) Optimized mesh (2700 elem)

MDA 30P/30N: M∞ = 0.2, α = 5◦, Re = 106, outputs = drag, lift

Mach contours lift adjoint (x-momentum) Optimized mesh (5300 elem)

RAE 2822: M∞ = 0.734, α = 2.79◦, Re = 6.5× 106, outputs = drag, lift

Mach contours drag adjoint (x-momentum) Optimized mesh (2600 elem)

Diamond airfoil: M∞ = 1.5, α = 2◦, Re = 106, output = lift

Mach contours lift adjoint (energy) Optimized mesh (3900 elem)

175

0 2000 4000 6000 8000 10000

10
-1

10
0

Minibatch iteration

M
e

a
n

-s
q

u
a

re
d

 e
rr

o
r

lo
s
s

Mini-batch loss

Training set loss

Validation set loss

Figure 8.3: Neural network A training loss history, using a 70% training, 30% validation
split.

can be gained from a graphical representation, as shown in Figure 8.4 for networks A,C,

and D (network B is too large to clearly visualize). These have all been trained using p = 2

solutions. Note that the hidden neurons have been sorted based on importance, calculated

from incoming and outgoing weight magnitudes, with the most important/active neurons

at the top. We see that in network A, the primal and adjoint features contribute similarly

to the final output (based on the weights of connections emanating from the input blocks),

and that the error indicators (particularly the fourth, energy component) are active. In

network C, which has a small hidden layer, the primal features contribute somewhat

more than the adjoint features, and the error indicators are quite active (large magnitude

weights). Finally, for network D, which does not use the error indicators, the primal

features are more active than the adjoint features. In addition, in networks A and C, the

bias magnitudes are large for the important hidden layer neurons, whereas this is not the

case for network D.

8.3 Adaptive Simulation Results

This section presents results obtained by implementing the trained neural network in

an adaptive solution process and using it to generate adapted meshes for various flow

cases at different degrees of freedom. When using the network to determine anisotropy

information, the same a priori element sizing technique, described in Section 4.4.3.1, is

used as in the Hessian-based approach. The neural network results are compared to both

Mach number Hessian-based adaptation and MOESS.

176

(a) network A (b) network C (c) network D

Figure 8.4: Visualization of the trained neural networks. The input highlighting indicates
primal (blue), adjoint (red), and error indicator (yellow) neurons. The darkness and width
of connecting lines indicate weight magnitudes, and the color of the neurons indicates bias
magnitude. The hidden layer neurons are sorted by importance, using the product of the
sum of incoming weight magnitudes and the sum of outgoing weight magnitudes. The
two outputs are Sout,1,1 and Sout,1,2.

177

8.3.1 NACA 0012 Airfoil

This test case consists of RANS fully-turbulent flow over a NACA 0012 airfoil at

M∞ = 0.8, α = 1.25◦, and Re = 5× 106. The computational domain consists of a square

farfield boundary 100 chords away from the airfoil. An adiabatic no-slip wall boundary

conditions is imposed on the airfoil. Shock capturing is performed using element-based

artificial viscosity [128], and the output of interest is the drag coefficient on the airfoil.

A hand-generated initial isotropic mesh of 2800 elements is constructed with sufficient

boundary-layer resolution to enable a converged RANS solution.

Adaptive simulations are performed at p = 2 solution approximation order for three

target degrees of freedom (DOF) costs: 8000, 16000, 32000. At each target DOF, 10 adaptive

iterations are run, using the final mesh from the previous target DOF as the starting mesh

at each iteration. The adaptive methods compared are MOESS, Mach-number Hessian,

and the neural-network approaches.

Figure 8.5 presents the output convergence histories obtained from the adaptive runs.

For each method, only one data point is shown at a given DOF target: this is the average

output at the average DOF value computed over the last 4 adaptive iterations at that

target DOF. An “exact” value is also indicated, obtained by running a simulation at an

approximation order of p = 3 on a uniformly-refined version of the final MOESS adapted

mesh.

1 1.5 2 2.5 3 3.5

Degrees of freedom ×10 4

0.0255

0.026

0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

D
ra

g
 c

o
e
ff
ic

ie
n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact

0.0258

0.026

0.0262

0.0264

0.0266

0.0268

Figure 8.5: NACA 0012, M∞ = 0.8, α = 1.25◦, Re = 5×106: output convergence history.

We see that after the coarsest target DOF, the adaptive results using most of the neural-

network methods are closer to the exact value compared to those using the Mach number

178

Hessian anisotropy. By the finest target DOF, this is true for all of the network methods.

As both methods are driven by the same output-based element sizing information, the

observed error reduction is made possible by more efficient meshes resulting from improved

anisotropy information. Specifically, correct anisotropy identification allows for optimal

use of degrees of freedom to reduce the output error.

The neural network approaches can achieve more optimal mesh anisotropy because

they incorporates information not only from the primal solution, but also from the adjoint.

The networks were trained to reproduce the element stretching obtained from MOESS,

but they also include a degree of regularization, which leads to a slightly-improved per-

formance over MOESS. This point is discussed further in the subsequent results.

Figure 8.6 shows the final adapted meshes at the highest target DOF for three of the

adaptive approaches tested. The neural network meshes are similar, and hence only

results from one network (A) are shown. The flow is transonic with a strong shock on the

upper surface, a weaker shock on the lower surface, and rapid boundary-layer growth in the

vicinity of the shocks. From the three figures, we see that the resolution of the shock, which

is minimal to start with in the output-based setting, is similar among the methods, with

the neural-network indicator exhibiting slightly less primal-based anisotropy compared to

the Hessian indicator and MOESS.

As shown in Table 8.2, the adjoint variable possesses a λ structure variation on the

upper surface, and both the neural-network anisotropy measure and MOESS show evi-

dence of its resolution. The Mach number Hessian measure does not align elements to this

structure, which is specific to the adjoint. The most notable difference is the leading-edge

stagnation streamline anisotropy, which is again an adjoint feature that is resolved by

MOESS and the neural networks. Although the extent to which this feature needs to be

resolved for accurate output prediction is still a point of debate, it is reassuring to see the

neural network reproduce the MOESS behavior, for which it was trained. Finally, near

the trailing edge, the Hessian-based measure shows more flow-aligned anisotropy, due to

the primal wake, which is not as apparent in MOESS and the neural-network approach.

8.3.2 Diamond Airfoil

This test case consists of RANS supersonic flow over a diamond airfoil at M∞ =

1.5, α = 2◦, and Re = 1 × 106. The leading and trailing edge corner angles are both

2 tan−1(.05). The computational domain consists of a square farfield boundary 100 chords

away from the diamond. An adiabatic no-slip wall boundary conditions is imposed on the

airfoil. Shock capturing is again performed using element-based artificial viscosity [128].

The output of interest is the lift coefficient on the airfoil. A hand-generated initial isotropic

179

(a) MOESS

(b) Hessian

(c) neural network A

Figure 8.6: NACA 0012: final adapted meshes.

180

mesh of 1500 elements is constructed with sufficient boundary-layer resolution to enable

a converged RANS solution.

Adaptive simulations are performed at p = 2 solution approximation order for three

target DOF costs: 10000, 20000, 40000. At each target DOF, 10 adaptive iterations are

performed, using the final mesh from the previous target DOF as the starting mesh. As

in the previous case, MOESS, Mach-number Hessian, and the neural-network anisotropy

prediction methods are compared.

Figure 8.7 presents the output convergence history obtained from the adaptive runs,

where again averaging has been performed over the last 4 iterations at each target DOF.

The “exact” value is also indicated, obtained from a p = 3 run on a uniformly-refined

version of the final MOESS adapted mesh.

1 1.5 2 2.5 3 3.5 4 4.5

Degrees of freedom ×10 4

0.126

0.1261

0.1262

0.1263

0.1264

0.1265

0.1266

0.1267

0.1268

0.1269

0.127

L
if
t
c
o
e
ff
ic

ie
n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact0.12665

0.1267

0.12675

Figure 8.7: Diamond airfoil, M∞ = 1.5, α = 2◦, Re = 1 × 106: output convergence
history.

We see that at all target DOF, the adaptive results using neural-network anisotropy

are much closer to the exact value compared to those using the Mach number Hessian

anisotropy. In this case, the difference between Hessian-based anisotropy and MOESS

is significant, and the machine-learning approaches follow the MOESS results closely.

As in the previous case, the accuracy improvement is made possible by a more optimal

distribution of degrees of freedom due to correct anisotropy in regions where the output

error is more sensitive to resolution in one direction than another. In this case, the

performance of MOESS and the neural-network are close in terms of output accuracy

versus degrees of freedom, and in fact, on the finest mesh, the neural networks perform

better, as shown in the zoomed-in portion of Figure 8.7. This behavior will be seen in

181

subsequent results, and it is likely due to a regularization effect of the neural networks:

their anisotropy predictions are less sensitive to outlier primal and adjoint input features,

such as lines of primal or adjoint discontinuity.

Figure 8.8 shows the final adapted meshes at the highest target DOF for the adaptive ap-

proaches tested. The neural network adapted meshes are similar, and again only one (A) is

given. The flow over the diamond airfoil is supersonic, with oblique shocks emanating from

(a) MOESS

(b) Hessian

(c) neural network A

Figure 8.8: Diamond airfoil: final adapted meshes.

the leading and trailing edges, and expansions originating from the mid-chord corners.

The Hessian-based primal anisotropy detection approach places shock/expansion-aligned

stretched elements in these areas, as expected based on the Mach number variations.

In contrast, MOESS places anisotropic elements in not only these areas, but also the

corresponding adjoint features, which mimic the primal shock/expansion structure but

182

in reverse (right to left instead of left to right). The result is a primal/adjoint resolv-

ing anisotropic mesh, with somewhat higher emphasis evident for the adjoint features.

Finally, the neural network anisotropy detection methods, like MOESS, also target the

primal and adjoint features, but with a lower degree of anisotropy in the primal and

adjoint shocks/discontinuities – the anisotropy remains high in the boundary layer.

We note top/bottom asymmetry of the resolution is expected due to the presence

of a nonzero angle of attack. In addition, all methods target the boundary layer with

anisotropic elements, although the Hessian-based approach places more emphasis on

anisotropy away from the wall near the trailing edge/wake compared to the other two

methods. Combined with the excessive resolution of the shocks and expansions due to

a primal-only anisotropy measure, particularly on the bottom aft portion of the airfoil,

Hessian adaptation produces mesh anisotropy that is nearly orthogonal to the required

one, which leads to a less efficient distribution of degrees of freedom and hence larger

error for a given target DOF.

8.3.3 MDA 30P/30N Airfoil

The third test case consists of subcritical RANS flow over the McDonnell Douglas

Aerospace (MDA) 30P/30N three-element airfoil at M∞ = 0.2, α = 5◦, and Re = 5×106.

The computational domain consists of a C-shaped farfield boundary that is 100-200 main-

element chords away from the airfoil. An adiabatic no-slip wall boundary conditions is

imposed on the airfoil main element, the leading-edge slat, and the trailing-edge flap.

The flow is subcritical and hence no shock capturing is employed. The output of interest

is the lift coefficient on the airfoil. An Euler-flow adapted initial isotropic mesh of 3000

elements is constructed with sufficient boundary-layer resolution to enable a converged

RANS solution.

Adaptive simulations are performed at p = 2 solution approximation order for three

target DOF costs: 8000, 16000, 32000. At each target DOF, 10 adaptive iterations are per-

formed, using the final mesh from the previous target DOF as the starting mesh. Again,

MOESS, Mach-number Hessian anisotropy, and the neural-network anisotropy methods

are compared.

Figure 8.9 presents the output convergence history obtained from the adaptive runs,

where averaging has been performed over the last 4 iterations at each target DOF. The

“exact” value is also indicated, obtained from a p = 3 run on the final MOESS adapted

mesh, uniformly-refined.

We see that the Hessian-based anisotropy detection method yields meshes that have

the lift output closer to the exact value compared to MOESS, although the prediction

183

0.5 1 1.5 2 2.5 3 3.5

Degrees of freedom ×10 4

1.51

1.512

1.514

1.516

1.518

1.52

1.522

1.524

1.526

1.528

1.53

L
if
t
c
o

e
ff
ic

ie
n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact

Figure 8.9: MDA 30P/30N, M∞ = 0.2, α = 5◦, Re = 5×106: output convergence history.

undershoots the exact value on the way to convergence. On the other hand, the neural

network approaches all perform better than MOESS by the second DOF target and hone

in closest to the exact value on the finest meshes compared to Hessian and MOESS

anisotropy. We note that the neural network results are not identical, and that the

output differences on the coarsest DOF target are large.

Figure 8.10 shows the final adapted meshes at the highest target DOF for the adaptive

approaches tested. The most notable differences are in the placement of anisotropy on the

leading-edge stagnation streamline and near the lower corner of the main-element cove.

Anisotropy on the leading-edge streamline is strongest with MOESS, diminishes slightly

with the neural-network method, and is nonexistent for the Hessian approach. This is

consistent with the observation that the anisotropy in this region is driven by features

of the adjoint, to which the Mach-number Hessian is agnostic. On the other hand, the

Hessian approach places anisotropic elements in the region of flow coming off the lower

surface of the main element, into the cove. This anisotropy is driven by the edge of the

boundary layer, in which the Mach number variation is large. MOESS and the neural

network approaches do not fixate on this region, indicating that high element stretching

is not required there.

8.3.4 Extrapolation: Tandem NACA 5410 Airfoils

The previous tests demonstrated the ability of the neural network approaches to cor-

rectly detect anisotropy in cases used for training. Given the complexity of the training

184

(a) MOESS

(b) Hessian

(c) neural network A

Figure 8.10: MDA 30P/30N airfoil: final adapted meshes.

185

flow fields and the relatively small sizes of the networks, the successful performance of the

networks was by no means guaranteed. Nevertheless, the generalizability of the network

must be assessed on an extrapolation case, which is one for which the network was not

trained.

For this test, we choose a completely new geometry: two NACA 5410 airfoils separated

by approximately two chord lengths, as shown in Figure 8.11. The farfield boundary is a

square, 100 chords away from the airfoils. The flow conditions are also different from the

previous tests: M∞ = 0.3, α = 5◦, and Re = 2 × 106. A hand-generated initial isotropic

mesh, shown in Figure 8.11a, of 1250 elements is constructed with sufficient boundary-

layer resolution to enable a converged RANS solution. The output of interest is the lift

coefficient on the second airfoil. Figure 8.11b shows the Mach contour and Figure 8.11c

shows the conservation of x-momentum component of the corresponding adjoint. Note the

high variation of the adjoint along the leading-edge stagnation streamline of the second

airfoil.

Adaptive simulations are performed at p = 2 solution approximation order for three

target DOF costs: 8000, 16000, 32000. At each target DOF, 10 adaptive iterations are per-

formed, using the final mesh from the previous target DOF as the starting mesh. As

in the previous cases, we compare MOESS, Mach-number Hessian anisotropy, and the

neural-network approaches.

Figure 8.12 presents the output convergence history obtained from the adaptive runs,

where again averaging has been performed over the last 4 iterations at each target DOF.

The “exact” value is also indicated, obtained from a four-times finer-mesh run at a higher

approximation order of p = 3.

We see that at all target DOF, the adaptive results using the neural-network approaches

are closer to the exact value compared to those using MOESS and the Mach number

Hessian anisotropy. Indeed, in this case, both MOESS and the Hessian-based methods

perform comparably, at least in terms of output convergence, even though the adapted

meshes, shown next, are different. The clustering of the neural network approaches indi-

cates similar performance.

Figure 8.13 shows the final adapted meshes at the highest target DOF for several of the

adaptive approaches tested. As in the previous tests, the meshes among the approaches

differ in their placement of anisotropic elements. The Mach number Hessian approach

focuses on the primal anisotropy, in the boundary layer and wake regions. It particularly

targets with anisotropy the initial wake of the second airfoil, an area not as much resolved

by the other methods. On the other hand, MOESS addresses both the primal and adjoint

anisotropy features. MOESS particularly targets the leading-edge stagnation streamline

186

(a) initial mesh

(b) Mach number

(c) conservation of x-momentum adjoint

Figure 8.11: Tandem NACA 5410 airfoils: initial mesh and primal/adjoint solutions.

187

0.5 1 1.5 2 2.5 3 3.5

Degrees of freedom ×10 4

0.86

0.87

0.88

0.89

0.9

0.91

0.92

L
if
t

c
o

e
ff

ic
ie

n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact

Figure 8.12: Tandem NACA 5410 airfoils: output convergence history.

of the aft airfoil, shown in the adjoint contours in Figure 8.11c, with anisotropic elements.

The Hessian-based method places isotropic elements in these regions, with anisotropy

between the airfoils driven only by the Mach number variation in the wake of the first

airfoil.

Finally, the neural network approaches, which yield similar meshes among themselves,

produce anisotropy distributions that are similar to MOESS, but with somewhat lower

emphasis on the adjoint anisotropy in the leading-edge stagnation streamline. This is

likely due to a regularization property of the neural networks, which are small relative to

the amount of training data, and which employ an activation function that saturates. As

a result, their predictions are not as sensitive to outlier inputs, such as very high adjoint

or primal anisotropy.

8.3.5 Adaptive Iteration Comparison

A practical consideration of adaptive methods is their cost. The final meshes produced

can be highly optimized, but their generation requires multiple adaptive iterations. Each

such iteration requires primal and adjoint solutions, which are relatively inexpensive on

coarse meshes but grow in cost as refinement proceeds. Ideally, an adaptive method

should not need many solutions on fine meshes before honing in on the optimal mesh. In

this section, we compare the various adaptive methods in terms of this cost measure.

The solver settings, target degrees of freedom, and mesh growth factors are the same

for all methods tested. Therefore, the measure of cost reduces to the number of iterations

188

(a) MOESS

(b) Hessian

(c) neural network A

Figure 8.13: Tandem NACA 5410 airfoils: final adapted meshes.

189

required to attain a certain error level. In the results thus far, 10 iterations were chosen

empirically by monitoring outputs and ensuring that they had stabilized by the point

of data collection, which was over the last four iterations. Restarts from previous target

degrees of freedom provide good starting meshes, which limit the number of extra adaptive

iterations needed.

In a production setting, of practical interest is the expense of generating the final

adapted solution starting from a coarse initial mesh. We study this cost in terms of the

number of adaptive iterations, using the same mesh growth factors for all methods. The

demonstration case is the tandem airfoil simulation from the previous section, with the

lift on the second airfoil as the output. The starting mesh is the coarse one shown in

Figure 8.11a, which has 7.5k DOF for p = 2, the target mesh size is 32k DOF, and the

growth factor set to 2.0.

Figure 8.14 shows the convergence of the output with adaptive iterations for all of the

methods. Both the actual output and the error relative to a truth solution are shown. The

output has not stabilized by the last four iterations for all methods, as this calculation

proceeds straight from the initial mesh to the finest DOF target.

0 2 4 6 8 10

Adaptive iteration

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

L
if
t

c
o

e
ff

ic
ie

n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact

(a) output

0 2 4 6 8 10

Adaptive iteration

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

|L
if
t

c
o

e
ff

ic
ie

n
t

e
rr

o
r|

(b) output error

Figure 8.14: Tandem NACA 5410 airfoils: adaptive iteration performance.

From the figure, we see that MOESS exhibits the slowest output convergence. MOESS

discovers the error model, specifically the rate tensor that governs anisotropy, through a

sampling procedure. This discovery takes multiple adaptive iterations, as the error model

is based on asymptotic analysis, and samples are computed relative to an incrementally

finer space. On the other hand, both the Hessian and neural-network-based approaches

discern the anisotropy from a direct mapping of the primal/adjoint solution features. As

soon as the primal and adjoint fields are reasonably resolved, the anisotropy prediction

190

becomes accurate and drives the meshes more quickly to the final optimized mesh. We

note, however, that the Hessian-based approach converges to a larger error compared to

the neural network approaches, as expected from the data in the previous section. The

neural network methods hone in on the optimal meshes quickly, by the fourth adaptive

iteration in this test case, minimizing the number of solutions required at the finest DOF

target.

Figure 8.15 compares the first four adapted meshes between MOESS and the neural

network A approach. The side-by side meshes in each row are at similar DOF. We see that

MOESS discovery of anisotropy proceeds more slowly, with largely isotropic elements in

the joining wake until the fourth adaptive iteration. On the other hand, anisotropic ele-

ments are already present in the neural network meshes by the second adaptive iteration.

Combined with the higher resolution in the vicinity of the airfoils, the result is of faster

iterative convergence to the optimal mesh.

(a) MOESS (b) neural network A

Figure 8.15: Tandem NACA 5410 airfoils: meshes at adaptive iterations 1 (top) through
4 (bottom).

8.3.6 p = 3 Results

All results so far were obtained using an approximation order of p = 2 for both

training and deployment simulations. In this section we present, as an extension, a subset

of corresponding p = 3 results. Recall that for p > 2, the state and adjoint fields are first

least-squares projected to p = 2 approximation order within each element, in order to

191

obtain constant elemental Hessian matrices. This occurs during training and deployment

feature calculations. The relative error indicators remain unaltered from the standard

adjoint-weighted residuals, computed at order p+ 1.

8.3.6.1 Network Training

The same flow cases that were used for training at p = 2, described in Section 8.2, are

also used at p = 3. The training algorithm, including the optimizer, batch size, learning

rate, and number of iterations, also remains the same. The resulting training loss history

is similar to that shown in Figure 8.3. Figure 8.16 illustrates three out of the four trained

networks, A, C, D. Note that the number of inputs, outputs, and hidden layer sizes does

not change with p.

(a) network A (b) network C (c) network D

Figure 8.16: Visualization of the neural networks for p = 3. The format is the same as
the p = 2 version in Figure 8.4.

Based on the connecting weights, we see that in network A, the baseline, the primal

and error indicator features contribute relatively more to the output prediction than the

adjoint features. In network C, which has the small hidden layer, the error indicator

features become more important. Finally, in network D, which does not use the error

indicators, the contributions from the primal and adjoint features are similar.

192

8.3.6.2 Tandem NACA 5410 airfoil test

We present one p = 3 result, the same extrapolation test case as in Section 8.3.4. The

flow conditions, starting mesh, output of interest, and DOF targets remain unchanged.

Figure 8.17 shows the convergence of the output, the lift coefficient on the aft airfoil

averaged over the last four adaptive iterations, with degrees of freedom. The “exact”

value is computed at p = 4 on a uniformly-refined version of the finest MOESS-adapted

mesh.

0.5 1 1.5 2 2.5 3 3.5

Degrees of freedom ×10 4

0.86

0.87

0.88

0.89

0.9

0.91

0.92

L
if
t

c
o

e
ff

ic
ie

n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact

Figure 8.17: Tandem NACA 5410 airfoils: p = 3 output convergence history.

We see that the neural network results are similar and that they yield outputs closer

to the exact result for all DOF targets. Both MOESS and the Hessian-based methods

perform comparably, even though the adapted meshes, are different.

Figure 8.18 shows the final adapted meshes at the highest target DOF. These are coarser

than the p = 2 ones in Figure 8.13, due to the higher DOF per element for p = 3. We

see similar differences in the anisotropy placement. First, MOESS heavily targets the

stagnation streamline for the aft airfoil, with high aspect ratio elements. The neural

network mesh exhibits less anisotropy in this area, and the Hessian mesh places isotropic

elements there due to a lack of anisotropy in the Mach number ahead of the airfoil. At

the trailing edge of the aft airfoil, the Hessian-based mesh exhibits heavy anisotropic

refinement, due to Mach number variations in the boundary layer and wake. On the

other hand, the meshes from MOESS and the neural network show less refinement due

to lower anisotropy. Overall, as for p = 2, the neural network approaches, which again

yield similar meshes among themselves, produce anisotropy distributions that are similar

193

to MOESS, but with lower emphasis on the adjoint anisotropy features.

(a) MOESS

(b) Hessian

(c) neural network A

Figure 8.18: Tandem NACA 5410 airfoils: p = 3 final adapted meshes.

As in Section 8.3.5, we also test the rate at which the different methods converge to

the final meshes for p = 3. The initial mesh has 12.5k DOF for p = 3, and the target mesh

size is 32k DOF, with a growth factor of 2.0. Figure 8.19 shows the convergence of the aft

airfoil lift output with adaptive iterations. We again see a more rapid convergence of the

output with the neural network methods compared to MOESS, and we attribute this to

the direct feature-to-anisotropy map in the neural-network methods, as opposed to the

error model discovery of MOESS.

Figure 8.20 shows a comparison of the adapted meshes for MOESS and the neural

network A approach. As in the case of p = 2, we see that MOESS discovery of anisotropy

proceeds more slowly, with largely isotropic elements in the joining wake until the fourth

194

0 2 4 6 8 10

Adaptive iteration

0.85

0.9

0.95

1

1.05

L
if
t

c
o

e
ff

ic
ie

n
t

MOESS
Hessian
NNA
NNB
NNC
NND
Exact

(a) output

0 2 4 6 8 10

Adaptive iteration

10 -4

10 -3

10 -2

10 -1

10 0

|L
if
t

c
o

e
ff

ic
ie

n
t

e
rr

o
r|

(b) output error

Figure 8.19: Tandem NACA 5410 airfoils: p = 3 adaptive iteration performance.

adaptive iteration. In contrast, anisotropic elements are present in the neural network

meshes by the second adaptive iteration, resulting in faster iterative convergence to the

optimal mesh.

(a) MOESS (b) neural network A

Figure 8.20: Tandem NACA 5410 airfoils: p = 3 meshes at adaptive iterations 1 (top)
through 4 (bottom).

195

8.4 Summary

In this chapter, we introduce a machine-learning approach for determining optimal

mesh anisotropy in an output-based adaptive setting. An artificial neural network is used

to predict the desired element stretching ratio and direction from features of the primal

and adjoint solutions. The network is trained to reproduce anisotropy calculated by

MOESS, using features that are more easily calculated than the mesh-refinement sampling

procedure of MOESS. These features consist of aspect ratio and direction data computed

from the Hessian of each of the primal and adjoint variables, and from normalized error

indicators of each of the state components. The features are invariant to scaling of the

equations or outputs, and hence generalizable across different flow conditions, outputs,

and unit choices.

Trained on a large amount of data from prototypical aerodynamic flow cases, the net-

work model is able to closely follow the MOESS results in the deployment, i.e., producing

similar meshes and close output errors in an adaptive process, which is in general more

effective than pure Mach number Hessian-based anisotropy detection. In many of the

cases tested, the neural networks yielded outputs that, for a given degree-of-freedom tar-

get, were even more accurate than MOESS. This is in spite of the fact that the networks

were trained with MOESS data. The explanation for this is that the networks possess a

regularization property: the networks are small relative to the amount of training data

and employ an activation function that saturates. As a result, their predictions are not as

sensitive to outlier inputs, such as very high adjoint or primal anisotropy. This generally

results in lower aspect ratios in regions of large primal or adjoint variation.

Based on the analysis of the adapted meshes, we observe that MOESS appears to

over-emphasize regions of adjoint anisotropy, such as leading-edge stagnation streamlines,

whereas the Mach number Hessian-based approach appears to over-emphasize regions

of primal anisotropy, such as boundary layers and wakes. Although the element sizing

information is driven by a common error estimate, a sub-optimal anisotropy prediction

will yield inefficient flow-field resolution in these regions, requiring more mesh elements, or

equivalently higher error for a fixed degrees of freedom. The neural network approaches,

being less sensitive to sharp primal/adjoint features, can then perform better than either

MOESS or the Hessian approach.

Furthermore, the neural network methods can more rapidly converge to the final

adapted meshes compared to MOESS, at an expense close the Hessian-based adapta-

tion. Whereas MOESS discovers the error model, specifically the rate tensor that governs

anisotropy, through a sampling procedure, which can take multiple adaptive iterations,

196

both the Hessian and neural-network-based approaches discern the anisotropy from a di-

rect mapping of the primal/adjoint solution features. When these fields are reasonably

resolved, the anisotropy prediction becomes accurate and drives the meshes more quickly

to the final optimized mesh. These final meshes are more accurate for the neural network

methods compared to the Hessian approach.

197

CHAPTER 9

Adjoint-Free Error Estimation and Mesh Adaptation

Using Convolutional Neural Networks

So far the error estimation and mesh adaptation that have been used in this work

are all based on the output adjoint solutions. Although in Chapter 8, artificial neural

networks (ANNs) are used to predict the mesh anisotropy, the element sizing still relies

on the adjoint weighted residual (AWR). Due to the effectiveness of localizing the output

error and identifying the important regions for adaptation, AWR has been widely used

in aerospace CFD applications [85, 97, 98, 99, 115, 101, 207] to improve the simulation

accuracy and efficiency. Despite the great success in CFD applications, the additional

computational cost and implementation complexity associated with adjoint-based meth-

ods cannot be neglected. On the one hand, AWR requires solving a dual linear system

(adjoint equations) of the same size (current space), or larger when solving on enriched

(fine) spaces. Although this cost can be mitigated in problems where the adjoint solu-

tions on current space are solved regardlessly, such as gradient-based optimization; yet

for problems like unsteady simulations, uncertainty quantification or optimization with-

out gradients, additional costs are added and can be accumulated in these problems when

the adjoint is repeatedly solved. On the other hand, the implementation of the adjoint

method requires the transpose of the residual Jacobian matrix, which is not always avail-

able in explicit solvers or Jacobian-free methods [208]. In these circumstances, either the

continuous adjoint equations should be derived and directly discretized [129] or special

implementation efforts are required [209], adding considerable costs and efforts in the

development. The additional computational costs associated with the adjoint solves, in

addition to the implementation efforts, have largely hindered the effective use of adjoint-

based error estimation and the corresponding adaptation techniques in practice.

Motivated by the success of predicting mesh anisotropy using artificial neural networks,

we explore the possibility of estimating the output error and adapting the mesh using

198

machine learning techniques, without solving for the adjoint variables. Given the data

of adaptive flow simulations guided by adjoint-based error estimation, an error surrogate

model is trained to predict the output error as well as the localized error indicator field,

with only the low-fidelity solution as an input. For simplicity, mesh anisotropy is not

considered here, although it can also be incorporated through Mach number Hessian

or can be built in the surrgate model, which will be studied in the future. The goal

for the current work is to generalize the error modeling knowledge from the adaptive

simulation data at hand. More recently, error surrogate models based on machine learning

techniques have received much attention, largely because of their non-intrusive nature

and fast on-line evaluations. Several contributions have been made in error modeling

for parameterized reduced-order models (ROMs) [102, 103], and the ideas have been

extended to estimate discretization-induced errors [104]. Efforts have also been devoted

to predicting the errors in flow solutions and the outputs of interest obtained on coarse

computational meshes [105, 106], and the models have been used to guide the selection

of a set of a priori meshes [107]. Nonetheless, in these studies, no output error indicator

is provided to perform mesh adaptation. Manevitz et al. used neural networks to predict

the solution gradients in time-dependent problems, which then provided an indicator to

drive the mesh adaptation [108]. However, feature-based adaptive indicators are generally

not as effective as adjoint-based indicators, especially for functional outputs and problems

with discontinuities [109, 101]. Furthermore, these works rely on a set of user-selected local

features (feature engineering) to construct the model, requiring either expert knowledge

or fine tuning. Moreover, due to the local nature of the selected features (although

some neighboring information comes in with the gradient features), these models either

largely ignore the error transport, and thus are not expected to be effective for convection-

dominated problems, or still require the adjoint variables to bring in the global sensitivity

information.

In this chapter, we focus on inferring the output error for a CFD simulation, as well

as the corresponding localized error indicator field to drive mesh adaptation, directly

from the solution field without access to the adjoint variables. Suppose that we want to

predict elemental error indicator given a solution field, artificial neural networks can be

potentially used to construct a local surrogate model, which takes in some local features

defined a priori and output the local error indicator. However, in order to take into

account the error transport, the network input features ideally should be chosen along

the characteristics, which makes it almost impossible to pick a consistent set of local

features a priori for nonlinear problems. Alternatively, we can use the entire solution field

as the ANN input, and build a global error model to predict the entire error indicator

199

field. Nevertheless, the dimension (number of parameters) of the network grows fast as

the input and output dimensions increase due to the fully-connected network structure.

As a result, the network training quickly becomes computationally infeasible for problems

with high-dimensional input and output.

As mentioned in Chapter 3, the adjoint variables can be regarded as a generalized

Green’s function, which convolves a residual source to produce an output perturbation

(error estimate). In order to emulate the adjoint operator, network architectures that

involves convolution operations, namely the convolutional neural networks (CNNs), are

used in this work to map the solution field to the error indicator field. Particularly,

a set of linear convolution operators is trained to approximate the generalized Green’s

function which convolves the discretized solution to produce the corresponding error with

respect to a refined space. In other words, the network can be regarded as an approximate

adjoint-weighted-residual operator applied on the solution field, which produces the whole

error indicator field as well as the total output error. More importantly, the convolution

operators preserve the spatial locality and are shared for the input field, i.e., the network

is not fully connected. As a result, the dimension of the free parameters in the network

model scales well for large-scale problems, making it well-suited for the high-dimensional

map between the input solution and the output error indicator fields.

A CNN architecture that is specifically efficient for constructing this type of maps,

which involves high-dimensional input and output vectors, is the encoder-decoder type

CNN. It has shown excellent performance for image semantic segmentation and feature

extraction in computer vision tasks [210, 211, 212, 213, 214], and has recently received

much attention in physical modeling applications [215, 216, 217, 218] as well. The network

is composed of two subnetworks: an encoder convolutional neural network (CNN) that

extracts a low-dimensional representation (code) from the input data, i.e., the solution

field, followed by a decoder CNN that reconstructs the high-dimensional output field, i.e.,

the adaptive error indicator field. The ability of CNN to automatically learn internal

invariant features and multi-scale feature hierarchies alleviates the need for a tedious,

hand-crafted feature engineering process, making this approach more flexible and robust.

Instead of using the network output field to obtain the total output error, we connect the

codes (low-dimensional representations) extracted from the input field to a fully connected

network (FCN) to predict the total output error. The network training is supervised by

both the adaptive error indicator field and the total output error to capture both the

local and global features related to the numerical error. Since the two regression tasks

are trained simultaneously, separate models and additional training costs are avoided.

The remainder of this chapter proceeds as follows. We describe the CNN-based er-

200

ror surrogate model in Section 9.1, including the details of the network architecture and

the training procedure. The proposed network architectures are then applied in a simple

two-dimensional advection-diffusion problems shown in Section 9.2. More complicated

aerodynamic flow simulation over airfoils are considered in Section 9.3, and a brief sum-

mary of the present work is in Section 9.4.

9.1 CNN-Based Model for Output Error Estimation

9.1.1 Parameterized PDEs and Output Error Estimation

In this work, we consider parameterized governing PDEs in a fully-discretized form

following the notation in Chapter 2,

Rh(Uh(µ);µ) = 0, (9.1)

where µ ∈ RNµ is a vector of parameters sampled from the parameter space Dµ, charac-

terizing the physics of the system, e.g., initial and boundary conditions, material proper-

ties, or shape parameters in a design optimization problem; Uh ∈ RNu denotes the flow

state vector, uniquely defining the continuous flow state field uh ∈ Vh, where Vh is the

approximation space defined by a finite-dimensional discretization, denoted by h; and

Rh : RNu × RNµ → RNu is a nonlinear residual vector, which implicitly defines Uh as a

function of the parameter vector, Uh(µ) : RNµ → RNu .

Often in engineering applications, the quantities of particular interest are the scalar

outputs such as drag or lift, defined as,

Jh ≡ Jh(Uh(µ),µ) = Sh(µ). (9.2)

Jh : RNu × RNµ → R represents the explicit map to the scalar output from the discrete

state vector and the parameter vector; while Sh(µ) denotes the direct map between the pa-

rameter vector and the output, whose form is fairly complicated and generally intractable

explicitly. As discretization error always appears in Eqn. 9.1 on a finite-dimensional space

and affects the calculation of the state vector Uh, the resulting error in the output has to

be quantified and the mesh has to be adapted accordingly to ensure the accuracy of the

output of interest.

In practice, it is generally not possible to obtain the true discretization error of an

output, since the exact infinite-dimensional solution is often inaccessible. Instead, followed

the definition in Chapter 3, we use the difference between outputs evaluated on a coarse

201

approximation space VH and on a relatively finer space Vh as an estimate of the output

error,

output error: δJ ≡ JH(UH)− Jh(Uh). (9.3)

The subscripts H and h denote the coarse and fine spaces, respectively. However, the error

estimate in Eqn. 9.3 is hardly used in practice, as it requires the state vector solution on

the finer space, and more importantly the resulting error cannot be localized to guide the

mesh adaptation. Instead, an adjoint variable is used to bypass the expensive solve for

Uh on the finer space, and to provide localized error in each mesh element to drive the

mesh adaptation.

For a given output, the associated adjoint vector, Ψh ∈ RNu , can be used to weight

the residual perturbation to produce an output perturbation, such that the output error

can be estimated as,

δJ = JH(UH)− Jh(Uh)

= Jh(U
H
h)− Jh(Uh) ≈

∂Jh
∂Uh

δU

= −ΨT
h δRh = −ΨT

h

[
Rh(U

H
h)−Rh(Uh)

]

= −ΨT
hRh(U

H
h),

(9.4)

where Uh is the (hypothetical) exact solution on the fine space, and UH
h is the coarse

state injected into the fine space, which generally will not give a zero fine-space residual,

Rh(U
H
h) 6= Rh(Uh) = 0. Eqn. 9.4 gives a first-order approximation of the output error

and is valid when the residual perturbations are small. Furthermore, the output definition

is assumed to be unchanged between the coarse and fine spaces, i.e., JH(UH) = Jh(U
H
h).

In our implementation, Galerkin orthogonality, i.e., ΨT
HRH(UH) = 0, is assumed to be

consistent during the projection, and is subtracted from Eqn. 9.4 to account for remaining

convergence errors in both the primal and adjoint solves on the coarse space,

δJ = −ΨT
hRh(U

H
h)

= −[ΨT
hRh(U

H
h)−ΨT

HRH(UH)]

= −[ΨT
hRh(U

H
h)− (ΨH

h)TRh(U
H
h)]

= −[Ψh −ΨH
h]TRh(U

H
h)

= −δΨT
hRh(U

H
h).

(9.5)

This form of the adjoint-weighted residual indicates that in regions where the fine space

adjoint is well approximated by the coarse space, the contribution of local residual errors

202

to the output error will be small. More details about adjoint variables and the associated

output error estimation can be found in Chapter 3.

9.1.2 Hanging-Node Mesh Adaptation

The inner product in Eqn. 9.5 can be localized to each element using the local adjoint

vector to weight the local residual (perturbation) vector, which provides a measure of

elemental contributions to the total output error,

δJ = −δΨT
hRh(U

H
h) = −

Ne∑

e=1

δΨT
h,eRh,e(U

H
h) ⇒ Ee = |δΨT

h,eRh,e(U
H
h)|, (9.6)

where Ne is the total number of elements in the mesh, and the subscript e indicates the

product restriction to element e. The adaptive error indicator Ee is obtained by taking the

absolute value of the elemental error contribution. The error indicator can then be used

to drive mesh adaptation, actively controlling the discretization error to ensure output

accuracy.

In this work, mesh adaptation is performed using a hanging-node refinement strategy

starting from an initially structured quadrilateral mesh [219, 119]. At each adaptive

iteration, a fixed fraction of elements with the highest error indicators is targeted for

refinement. Presently, we only consider isotropic refinement in which each quadrilateral

element is subdivided uniformly into four sub-elements, although the method can be

extended to anisotropic mesh adaptation as well [219]. The subdivision is done in the

reference space and the physical mesh refinement is then determined through the reference-

to-physical mapping. For high-order curved elements, the refined elements inherit the

geometry order of the original unadapted element. For simplicity, we use curved elements

of the same geometry order throughout the computational domain. Note that elements

created in a hanging-node refinement can be marked for subsequent adaptation again.

In these cases, neighbors of the adapted elements will also be cut to keep a maximum

of one level of refinement difference between adjacent elements. Figure 9.1 presents an

illustration of the adaptation mechanics used in this work.

Although effective for output error estimation and mesh adaptation purposes, it re-

quires solving the linear adjoint equation, Eqn. 3.26, exactly or approximately on the finer

space, which has the same dimension as the fine-space flow problem. These additional

solves can add non-negligible costs in unsteady problems or in a many-query setting.

Moreover, Eqn. 3.26 requires the transpose of the residual Jacobian matrix, ∂Rh

∂Uh
, which is

not always available in Jacobian-free methods or if explicit time integration schemes are

203

Figure 9.1: Hanging-node adaptation for a quadrilateral mesh, figure reproduced from
[220]. The blue element on the left mesh is targeted for adaptation, while to keep a
maximum of one level of refinement difference, the adjacent element is also refined as
shown in the right mesh.

used. As a result, dedicated adjoint implementation efforts are required for these systems.

In this work, we avoid the adjoint implementation and reduce the computational cost by

directly constructing the maps from the injected flow state vector UH
h to the output error

δJ and the error indicator field E = {E1, E2, ..., ENe}.

9.1.3 Surrogate Model as a Regression Problem

The error surrogate model can be treated as two regression problems: given the input

solution vector from a CFD simulation U ∈ RNu , we would like to predict the scalar

output error δJ as well as the adaptive indicator field E over the entire mesh. Here we

omit the subscript h for simpler exposition. The output and input dimensions can be very

different; for example in a finite-element simulation, the state vector can be post-processed

into several state components of the same dimension UT = [UT
1 ,U

T
2 , ...,U

T
Nf

], where Nf

is the state rank. We call these state components channels following the convention

in computer vision. For each channel we have Ui ⊆ RNp×Ne ,∀i = 1, 2, ..., Nf , where

Ne is the number of elements in the mesh and Np is the degrees of freedom (DOF) per

element of approximation order p (assumed to be the same everywhere in the mesh). The

solution vector arrangement and dimension details for DG can be found in Chapter 2.

On the other hand, the error indicator field E is of the same dimension as the mesh size,

E ∈ RNe . The input (each channel) and output can be made to have the same dimension,

either by averaging the state vector over each mesh element on every individual channel i,

Ûi ≡ PUi ∈ RNe (P is the averaging or projection operator), or by further localizing the

error estimate in Eqn. 9.6 into each degree of freedom in every mesh element. Nonetheless,

their dimensions are not required to be the same in the proposed method.

Although the solution is obtained in a vector form, it is usually interpreted as a

field variable on the computational domain. Consider a flow problem solved on a two-

dimensional rectangular mesh with H elements in height and W elements in width, i.e.,

204

H ×W = Ne, the regression functions we are seeking can be written as

δ̃J = ferror(U) : RNf×Hin×Win×Np → R; Ẽ = findicator(U) : RNf×Hin×Win×Np → RHout×Wout ,

(9.7)

where Hin and Win are the height and width of each input channel, while Nf (state

rank) denotes the number of channels, or alternatively denoted as depth of the input

Din, Din = Nf . The input dimension of each channel depends on the mesh size, the

approximation order, and the operator P if projection is applied. For the former output

error model in Eqn. 9.7, the model output is a scalar; while for the latter adaptive indicator

model, the model output is a single-channel field of height Hout and width Wout since the

output error is localized into a scalar in each element. If other types of error localization

are used, the model output can have multiple channels or the dimension of each channel

can be higher than the mesh size. If we interpret the solution field of each component

(channel) as an image, then the first map ferror is an image-wise prediction often considered

in image classification problems, while the latter map findicator is a pixel-wise prediction

in image semantic segmentation tasks. The main difference is that in computer vision

applications, the inputs and outputs are often integer-valued, while they are generally

real-valued in physical systems. In this work, the two regression tasks are combined in a

single encoder-decoder type CNN and are trained simultaneously, which is presented in

details in Section 9.1.4 and Section 9.1.5.

9.1.4 Convolutional Neural Networks

Traditional ANNs/FCNs can be inefficient for high-dimensional problems as each neu-

ron is directly connected to all the neurons in the previous layer and the layer after, i.e.,

the network is fully connected. In other words, the fully-connected structure forces the

hidden neurons to learn global features spanning the entire visual field (output from the

previous layer), which introduces redundancy in the network parameters and poses chal-

lenges in the network training. Convolutional neural networks (CNNs) were introduced

in the 1990’s as a variant of traditional ANNs/FCNs, by taking into account the input

spatial information [221]. The convolution operations are designed to discover localized

features that are spatially-invariant. Hence, only a small region of the previous layer

(receptive field) is connected to each neuron and the corresponding weights and bias are

shared over the entire visual field. As a result, the dimension of the free parameters

(weights and biases) in the network does not depend on the dimension of the inputs and

outputs and thus CNNs often scale well for high-dimensional problems. With the ability of

automatically learning spatially-invariant features and its good computational efficiency

205

for high-dimensional problems, CNNs have demonstrated state of the art performance in

many computer vision benchmarks and have become the dominant approach in pattern

recognition [222, 223, 224].

A traditional CNN architecture is defined similarly to the FCNs in Section 8.1.3.1, with

the difference that each fully-connected hidden layer is replaced with a layer containing a

linear convolution with nonlinear activation (convolutional layer), and very often followed

with a feature pooling layer. The essential convolutional layer follows the equation below,

hli = σ(Wl
i ⊗ hl−1 + bli) ≡ σ(Θl

i ⊗ hl−1), i = 1, 2, ..., Dl, l = 1, 2, ..., L; (9.8)

where ⊗ is the discretized convolution operation. Assume the dimension of hidden units

(often called feature maps in CNN) from the previous layer hl−1 is Hl−1 ×Wl−1 ×Dl−1,

where Hl−1, Wl−1 and Dl−1 are the height, width and depth (channels) of the feature maps;

The ith convolutional filter Wl
i of dimension FH × FW × Dl−1 is applied to hl−1 with a

shared bias term bli (a scalar), where FW , FH and Dl−1 characterize the filter height, width

and the depth. Followed by a nonlinear activation σ similar to FCNs, the convolution layer

produces a new feature map of the output layer (one single channel) hli ∈ RHl×Wl×1. The

number of convolutional filters at layer l, Dl, determines the channels of the output feature

maps, such that the feature maps at layer l is of dimension Hl×Wl×Dl. The convolution

operation has the flexibility to deal with various input and output dimensions. The filter

(receptive field) slides over the input domain with stride s to perform the convolution,

which often down-samples the input layer hl−1. Zeros can be padded around the borders of

the input layer to adjust the width and the height of the output feature maps. An example

of a 3× 3× 1 Laplacian-like convolution filter with bias b = 1 and stride s = 1 applied on

a 4×4×1 input feature map is demonstrated in Figure 9.2. No padding is applied in this

case. A pooling operation is often used right after a convolutional layer, which further

down-samples the input feature maps by extracting the max values (max pooling) or the

averaged values (average pooling) of subregions (pooling filter) sliding through the input

features with strides larger than 1. A traditional CNN uses nonlinear activation after the

pooling layer while modern models often do not [225]. As the convolutional layer has the

ability to do the down-sampling with bigger strides and less padding, the pooling layer is

not always required and is not used in the current work.

Although CNNs are featured by the convolution operations, fully-connected layers

are also used in most CNN architectures. In traditional CNNs, the last convolutional

or pooling layer (last feature map) is reshaped to a vector and is connected to several

fully-connected layers to perform the final classification or regression tasks. However, in

206

1 2 0 1

1 001

4

1220

314

0 1 0

1 1-4

010 1

2 1 2 0 1

1 001

4

1220

314

42

1 2 0 1

1 001

4

1220

314

42

-3

1 2 0 1

1 001

4

1220

314

42

-1-3

1 2 0 1

1 001

4

1220

314 42

-1-3

Figure 9.2: An example of convolution operations.

our error indicator prediction task, we would like to reconstruct an indicator field which

requires an image-to-image regression. A paradigm for this type of problems in seman-

tic segmentation [212, 213, 214] is the encoder-decoder network architecture shown in

Figure 9.3. The intuition is that the high-dimensional inputs often lie on an embed-

ded low-dimensional nonlinear manifold or latent space, specifically representative of the

high-dimensional output field. Hence, an efficient way to find the map between high-

dimensional inputs and outputs is to go through the latent space, featuring an encoder

subnetwork to extract the high-level features (codes) from the input field, and a decoder

subnetwork to construct the output field from the low-dimensional codes. The encoder

subnetwork is a down-sampling process, often through convolution and pooling operations

or sole convolutions. To reconstruct the high-dimensional output filed, an up-sampling or

deconvolution process has to be performed, either through transposed convolution [226],

or using nearest-neighbor interpolation or bilinear interpolation [227]. The transposed

convolution approach is used in this work.

Fully connected layers

Input Convolution Pooling

Reshape Reshape

Deconvolution Deconvolution

DecoderEncoder

Codes

Figure 9.3: An example of encoder-decoder convolutional neural networks. The input
dimension is reduced through convolution and pooling operations, followed by fully-
connected layers to further reduce the feature dimension until the low-dimension codes
are obtained. The subnetwork performing this dimension reduction is the encoder part;
the decoder part performs the opposite operations with fully-connected layers and decon-
volution operations, increasing the dimension to reconstruct the output.

207

9.1.5 Proposed Architecture and Network Training

In the output error estimation and mesh adaptation problem, we would like to predict

the error in the output as well as the localized error indicator field. Instead of constructing

and training models separately for these two tasks, we propose a network architecture

capable of learning the two maps simultaneously, as shown in Figure 9.4. The network

consists of an encoder-decoder CNN to reconstruct the error indicator field and a FCN

connected to the latent layer (codes) of the CNN for output error estimation. The encoder-

decoder CNN is used to learn the latent features (codes) representative of the indicator

field, while the regression FCN guides the learning of the latent space and the total output

error as well. The network design is based on a simple assumption that the total output

error and the error indicator field should share some embedded features in the inputs. The

network is trained to minimize the loss of the reconstruction task in the decoder CNN,

and the loss of the regression task in the FCN, together with a L2 regularization penalty

to avoid excessive over-fitting. The training process is then an optimization problem

formulated as

Θ∗ = arg min
Θ

Lnet + λregLreg

= arg min
Θ

LE + λδLδ + λregLreg,
(9.9)

where Lnet denotes the total loss of the network, including the indicator prediction loss

LE and the output error prediction loss Lδ; Lreg represents the regularization loss that

penalizes all the network weights 1, including the linear map weights and the convolution

filters, to avoid over-fitting. λδ and λreg are the weights for the output error prediction loss

and the regularization loss, which are hyper-parameters 2 of the model. Θ in Eqn. 9.9 are

the network trainable parameters, which consist of the encoder parameters Θen, decoder

parameters Θde and the parameters in the fully-connected regression layer, Θδ. The

superscript ∗ denotes the optimized parameters to the optimization problem. Consider

Nd sample solutions, the indicator loss LE and the output error loss Lδ can be written as

LE =
1

Nd ×Ne

‖Ẽ i − E i‖2
F =

1

Nd ×Ne

‖findicator(U
i; Θen,Θde)− E i‖2

F , (9.10)

Lδ =
1

Nd

‖δ̃J i − δJ i‖2
2 =

1

Nd

‖ferror(U
i; Θen,Θδ)− δJ i‖2

2, (9.11)

1Sometimes the biases terms are also penalized, yet in this work we only penalize the network weights.
2Hyper-parameters are predefined and are not optimized during the training. They often have a big

impact on the model performance and can be optimally chosen through cross-validation.

208

where quantities with ·̃ indicate the predicted values of the model, while those without ·̃
are the ground-truth values from the training data. The regularization loss Lreg takes the

form of

Lreg =
∑

l

‖Wl‖2
F

dim(Wl)
, (9.12)

which penalizes the weights in each layer of the network, Wl. The gradients of the loss

function are calculated using back-propagation [228], and the parameters are updated

using stochastic gradient descent algorithms.

Fully connected layers

Input Convolution Convolution

Reshape

Reshape
Deconvolution Deconvolution

Decoder

Encoder

Codes

+

Figure 9.4: Proposed network architecture. The network is composed of an encoder
network, a decoder network, and a fully-connected regression network; the decoder and
the regression networks share the latent layer to improve the efficiency and to avoid
using separate models. The dimension reduction in the encoder only uses the convolution
operation, no pooling layer is used. The parameter vector µ is added into the latent layer
as additional codes to help the training.

In contrast to computer vision tasks, often in physical modeling we know a set of

low-dimensional codes beforehand: the parameters µ that govern the system, e.g., the

Reynolds number and the Mach number in a flow simulation. Although it is conceptu-

ally helpful to add these parameters into the codes in the training process, and this is

implemented in the present work, it does not improve the model performance much in

our tests. The author believes that the network should be able to extract the parameters

information directly from the state input, while these extra codes may be more helpful if

the training dataset size is limited.

9.1.6 Fixed Network for Adaptive Simulation on General Domains

Since traditional CNN models are often trained with data of fixed input and output

dimensions, they are not readily useful for adaptive simulations as the dimensions of

the state and error indicator fields both change as the mesh gets adapted. In order to

generalize the model for adaptive simulations, we use a fixed reference mesh to do the

error estimation for adaptive simulations. In other words, the fine space h in Eqn. 9.5 is

209

achieved using a fixed reference mesh that is much finer than the current mesh. At each

adaptive iteration, the states are solved on the current mesh and then projected to the

reference fine mesh to obtain a fixed-dimension state vector UH
h . After applying Eqn. 9.5

on the reference mesh, we obtain a fixed-dimension error-indicator field, Eh, which is then

projected back to the current mesh to drive the mesh adaptation, as shown in Figure 9.5.

Since the injected states UH
h and the fine space error indicators Eh are of fixed dimensions,

the proposed CNN network can be easily constructed to build the map between them.

This error estimation procedure is different from standard adjoint-based error estimation,

where the fine space is usually achieved with approximation order increment, p to p+ 1.

During an adaptive simulation, the state data UH
h and the error indicator data Eh are

collected on the same reference mesh at each adaptive iteration, resulting in multiple

samples for every complete adaptive simulation.

Figure 9.5: An example of building the proposed CNN model on rectangular domains.
This example shows an adaptive simulation for the scalar advection-diffusion problem
studied in Section 9.2, where the red color denotes large magnitude while the blue regions
are of small magnitudes.

This treatment is straightforward for rectangular computational domains without in-

terior geometries. However, practical CFD simulations often involve complex geometries

and irregular computational domains, especially in an adaptive setting. Therefore, we seek

in this work a topology map from the current computational domain to a rectangular ref-

erence domain first, then the projection procedure in Figure 9.5 is applied. Particularly,

for the airfoil problems that will be considered in this work, we use the most common

single-block topology mapping from a “C-mesh” around the airfoil to a rectangular Carte-

sian mesh. The error estimation and mesh adaptation can be summarized in Figure 9.6:

210

the state vector on the current space, UH , is first injected to a fixed reference “C-mesh”

where the adjoint weighted residual is evaluated and localized, then the localized error

indicator can be transferred back to the working mesh for adaptation; Since the fixed fine

mesh, i.e., the reference “C-mesh”, is topologically equivalent to a fixed Cartesian mesh

on the reference space, we can transfer the states vector and the error indicator vector

from the reference “C-mesh” on the physical space to the reference Cartesian mesh on

the reference space, where our proposed network architecture can be built in a traditional

fashion. Two key benefits of this approach compared to other CNN models that treat

the physical inputs directly as image pixels [215, 229, 217] (sampling the inputs on a

rectangular mesh) are:

• The input and output are smoother than treating them directly as image pixels,

which may cause some visual artifacts in the output field. This is even more prefer-

able if the output fields are physical quantities.

• This approach has the potential to deal with multi-scale physics, as the reference

“C-mesh” can be anisotropic while the mesh stretching is embedded in the physical-

reference space mapping, i.e., the mapping Jacobian. Nonetheless, the Jacobian field

has not been used as an input for this work yet.

The proposed network architecture is first applied in a simple two-dimensional scalar

advection-diffusion problem in Section 9.2, where the computational domain is a regular

rectangular domain. More complicated aerodynamic simulations over airfoils are consid-

ered in Section 9.3. The reference space fine mesh as shown in Figure 9.6 is adopted to

handle the geometry and the non-rectangular domain. For simplicity, structured quadri-

lateral meshes are used for both problems. Although the CNN model relies on quadri-

lateral meshes on rectangular domains, which directly restricts the reference fine meshes

(on both the physical and reference spaces), yet the current coarse working mesh can

be arbitrary as the state injection and indicator projection can be done even between

different mesh structures.

9.2 Two-Dimensional Advection-Diffusion Problem

We first test our proposed network architecture on a scalar advection-diffusion prob-

lem, with the governing equation written as

~V · ∇u− ν∇2u = 0, (x, y) ∈ Ω, (9.13)

211

Figure 9.6: An example of building the proposed CNN model on general domains. The
red arrows describe the steps taken in the offline model training process, where the data
from the adjoint-based approach is used. On the other hand, the black arrows depict
the online prediction phase, where both the overall output error and the adaptive error
indicator field are directly predicted by the CNN model. Note in this work, we use the
readily available output difference between the coarse and fine spaces as the output error
truth data, rather than the adjoint-based estimation.

212

where ~V denotes the advection velocity, ν is the viscosity, and u is the scalar state. In this

problem, we consider a simple unit square computational domain. A Dirichlet boundary

condition is used on all four boundaries,

u = exp(0.5 sin(−4x+ 6y)− 0.8 cos(3x− 8y)), (x, y) ∈ ∂Ω. (9.14)

The governing equation is discretized with a DG method as presented in Chapter 2, which

results in a discretized algebraic equations in the form of Eqn. 9.1,

R(U;µ) = 0, µ = {~V , ν}. (9.15)

The output of interest J is the integral of the viscous flux, −ν∇u, at the right boundary

of the domain.

9.2.1 Data Generation and Preprocessing

In the test problem, we restrict the advection velocity magnitude to be unit, |~V | = 1;

and we use the non-dimensional Péclet number (Pe) instead of the viscosity to parame-

terize the system. Thus, the parameter space is reduced to two dimensions, µ = {α, Pe},
where α is the advection angle defined by ~V = [cosα, sinα], and the Péclet number is de-

fined as Pe ≡ |~V |L/ν, where L is the domain length. We generate the data by uniformly

sampling 21 points in the advection angle space α ∈ [0, 60] degrees and 50 points in the

Péclet number space Pe ∈ [1, 50], resulting in a data set of 1050 adaptive simulations,

Dµ = {µi}, i = 1, 2, ..., Nµ (Nµ = 1050).

At each parameter point µi, the governing equation is solved with a DG p = 1 dis-

cretization on a uniform mesh starting with 5×5 elements. Then the output error indicator

field is obtained with the adjoint-based method as shown in Figure 9.5, with a reference

fine mesh consisting of 320× 320 elements. Both the adjoint and state vectors are solved

exactly on the fine reference mesh for the error estimation and error localization. Since

the state vector is solved exactly on the fine mesh, we use the exact difference between

the outputs on the current mesh and the reference mesh as the ground truth value for

the output error in our data. If the state and adjoint vectors are solved approximately

on the reference mesh, the adjoint-weighted residual can be used as the true output error

instead. In each adaptive simulation, 19 mesh adaptations are performed, resulting in 20

data points including the data on the initial mesh. Therefore, the entire dataset contains

Nd = Nµ × 20 = 21000 samples. The dataset is then randomly shuffled and split into a

training dataset of 14700 samples (70%), a validation dataset of 4200 samples (20%), and

213

a testing dataset of 2100 samples (10%).

Since the error indicator is localized to a scalar per element, the state vector (per

channel) with order p > 0 will have higher dimension compared to the error indicator field.

Nonetheless, the network can be carefully designed to handle the dimension mismatch.

However, the state non-uniqueness at element interfaces in the DG method makes the

network design and training cumbersome. In the current implementation, we average

the states at the element interfaces to make the solution “continuous”. This can also be

considered in the CNN point of view as a down-sampling or convolution operation only on

the element interfaces. However, this filter is defined a-priori, which may not be optimal in

our regression tasks. For approximation order p = 1, the averaging process results a state

vector of the same size as the reference mesh nodes, while the adaptive error indicator

field has the same size as the reference mesh elements. Therefore, the network input is of

size 321× 321, while the network output is a 320× 320 single-channel indicator field and

a scalar output error predication. A logarithm transformation is applied to the indicator

field log(|E|) and the output error log(|δJ |) before training, as the transformed output

has lower variance and generally helps the training [102, 103]. Several samples from the

dataset are shown in Figure 9.18, in which the second column shows the projected state

fields (network inputs), and the fourth column presents the error indicator fields (network

outputs), both on the fine reference mesh.

9.2.2 Network Implementation and Training

The network is designed following the architecture proposed in Section 9.1.5, and the

detailed structure is summarized in Table 9.1. The training loss is defined according to

Eqn. 9.9 with λδ = 64 and λreg = 0.001 3. λδ is large since the output error modeling

is found to be more difficult than the indicator field prediction though the latter has

much higher dimension. The output error allows cancellations of the errors in different

elements such that its behavior is more oscillatory compared to the more conservative

error indicator field. The network is implemented in TensorFlow [205] and trained with

the adaptive moment estimation (Adam) algorithm [206]. The starting learning rate is

set to be 0.0001, and 500 total epochs with mini-batch size of 20 are run in the training.

The training and validation losses are recorded in Figure 9.8, and the performance of

the resulting model on both the training and validation datasets is shown in Figure 9.9

and Figure 9.10. As expected, the model performs well on the training data which the

3λδ and λreg are hyper-parameters that can be further tuned to achieve better performance. The
outputs have to be normalized to make the tuned hyper-parameters more generalizable, yet this is not
performed in our training.

214

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−16

−14

−12

−10

−8

−6

−4

−2

0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−16

−14

−12

−10

−8

−6

−4

−2

0

−4.50

−4.25

−4.00

−3.75

−3.50

−3.25

−3.00

−2.75

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−16

−14

−12

−10

−8

−6

−4

−2

0

−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

(a) UH (b) UH
h (c) Ψh (d) Eh (e) EhH

Figure 9.7: Three samples from the dataset of the scalar advection-diffusion problem.
The first and the last columns show the state and the indicator fields on current adapted
meshes. The second and the fourth columns are the projected sates and the error indica-
tors on the reference mesh, used as inputs and outputs respectively in our network model.
The third column depicts the adjoint variables on the reference mesh. The reference mesh
has 320× 320 elements, and the mesh lines are not shown to make the contours clearer.

215

model is trained with. Meanwhile, the model also shows good predictions for both the

adaptive error indicator fields and the total output errors on the validation set, as shown

in Figure 9.9 and Figure 9.10, indicating a good generalization of the model 4. The model

performance will be investigated in details on the testing dataset in Section 9.2.3.

0 50000 100000 150000 200000 250000 300000 350000
Mini-batch training iterations

10−1

100

101

102

M
in

i-
b

at
ch

lo
ss

es

Training loss

Training loss (smoothed)

Validation loss

Validation loss (smoothed)

Figure 9.8: Training history of the model for the scalar advection-diffusion problem.

4In general, the validation dataset is used to monitor the model generalization and tune the model
hyper-parameters during the training, and thus is not suitable as testing data although the model does
not see the validation data during the training.

216

Table 9.1: Network architecture for the scalar advection-diffusion problem.

Subnetwork Sublayer Input layer Operation Output dim Activation
Input States 321× 321× 1

Pe 1
α 1

Encoder Conv1 States Convolution (F = 2× 2× 128, s = 1) 321× 321× 128 ReLU
Conv2 Conv1 Convolution (F = 2× 2× 128, s = 2) 161× 161× 128 ReLU
Conv3 Conv2 Convolution (F = 2× 2× 128, s = 2) 81× 81× 128 ReLU
Conv4 Conv3 Convolution (F = 4× 4× 128, s = 4) 21× 21× 128 ReLU
Conv5 Conv4 Convolution (F = 4× 4× 64, s = 4) 6× 6× 64 ReLU
Flat Conv5 Reshape 2304× 1 None
Compress Flat Fully-connected 800× 1 ReLU
Codes Compress, Pe, α Concatenate 802× 1 None

Decoder Decompress Codes Fully-connected 1600× 1 ReLU
Unflat Decompress Reshape 5× 5× 64 None
Deconv1 Unflat ConvolutionT (F = 4× 4× 128, s = 4) 5 20× 20× 128 ReLU
Deconv2 Deconv1 ConvolutionT (F = 4× 4× 128, s = 4) 80× 80× 128 ReLU
Deconv3 Deconv2 ConvolutionT (F = 2× 2× 128, s = 2) 160× 160× 128 ReLU
Deconv4 Deconv3 ConvolutionT (F = 2× 2× 128, s = 2) 320× 320× 128 ReLU
IndPred Deconv4 Convolution (F = 2× 2× 1, s = 1) 320× 320× 1 None

Regressor Dense1 Codes Fully-connected 400× 1 ReLU
Dense2 Dense1 Fully-connected 200× 1 ReLU
Dense3 Dense2 Fully-connected 100× 1 ReLU
ErrEst Dense3 Fully-connected 1 None

5This is a transposed convolution operation [226].

217

Pe = 26, α = 54, i = 09

S
ta

te
s

Pe = 20, α = 51, i = 05 Pe = 20, α = 21, i = 00 Pe = 37, α = 30, i = 18 Pe = 45, α = 39, i = 11 Pe = 06, α = 27, i = 18 Pe = 28, α = 42, i = 08 Pe = 49, α = 39, i = 02 Pe = 23, α = 42, i = 08 Pe = 06, α = 03, i = 11

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−10 −5

N
o
rm

a
li
ze

d
H

is
t

−10 −5 −10 −5 −15 −10 −10 −5 −20 −15 −10 −10 −5 −10 −5 −10 −5 −15 −10 −5
0.0

0.2

0.4

0.6

0.8

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) training set
Pe = 35, α = 12, i = 13

S
ta

te
s

Pe = 08, α = 09, i = 01 Pe = 37, α = 36, i = 16 Pe = 16, α = 54, i = 06 Pe = 19, α = 36, i = 00 Pe = 31, α = 51, i = 15 Pe = 44, α = 48, i = 03 Pe = 37, α = 45, i = 08 Pe = 03, α = 03, i = 16 Pe = 29, α = 12, i = 07

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−15 −10 −5

N
o
rm

a
li
ze

d
H

is
t

−10 −5 −20 −15 −10 −5 −15 −10 −5 −10 −5 −20 −15 −10 −5 −10 −5 −15 −10 −5 −15 −10 −5 −10 −5
0.0

0.2

0.4

0.6

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(b) validation set

Figure 9.9: Model performance of error indicator field predictions on the training and
validation sets (scalar advection-diffusion). The top row shows the inputs to the network;
the top caption shows the parameters of the current data point, in which i indicates the
index of the current adaptive iteration, starting from 0. The second row presents the
ground truth, while the third row contains the predictions made by the network model.
The last row compares the normalized histograms of the predictions (orange) and the
ground truth (blue).

9.2.3 Network Testing and Model Deployment

The model obtained in Section 9.2.2 is first tested on the testing set generated in

Section 9.2.1 to assess the generalization power of the model on unseen data. This can

also be considered as an interpolation test since the testing data and the training data

show strong similarity as they are both sampled from the same dataset generated in

218

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9990

True error

Network prediction

(a) training set

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9818

True error

Network prediction

(b) validation set

Figure 9.10: Model performance of output error predictions on the training and validation
sets (scalar advection-diffusion). Each plot is generated using 200 samples randomly
sampled from the training and validation sets.

Section 9.2.1. To further study how well the model generalizes, we also generated more

data with parameters that are out of the parameter space sampled in Section 9.2.1 and

tested the model on them, which we called extrapolation tests in this work. On each

testing set, we also deploy the trained model in the flow solver to validate the effectiveness

of the model predictions in real-time simulations.

9.2.3.1 Interpolation on Unseen Data

In this test, the testing samples are from the testing set generated in Section 9.2.1. The

performance of the model is shown in Figure 9.11, from which we can see that the model

achieves good accuracy on both the adaptive error indicator and output error predictions.

The model is then deployed to perform two adaptive simulations using the parameters

chosen from Figure 9.11a. Standard adjoint-based error estimation and mesh adaptation

are also performed on these two cases. All the simulations start with the same initial

mesh with 5 × 5 elements. The final adapted meshes and the output error convergence

are compared using our model and the standard adjoint-based approach, as shown in

Figure 9.12. We can see that the trained model is able to identify important regions for

the output prediction and produce similar final adapted meshes compared to the adjoint-

based method, although the true output errors are slightly higher than the adjoint-based

method. On other other hand, the CNN model also gives acceptable error estimation on

the true output error, with accuracy comparable to the adjoint-based approach.

219

Pe = 27, α = 45, i = 17

S
ta

te
s

Pe = 26, α = 12, i = 04 Pe = 03, α = 30, i = 04 Pe = 46, α = 60, i = 06 Pe = 31, α = 48, i = 06 Pe = 07, α = 09, i = 01 Pe = 09, α = 51, i = 17 Pe = 30, α = 12, i = 17 Pe = 15, α = 60, i = 16 Pe = 46, α = 33, i = 01

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−15 −10 −5

N
o
rm

a
li
ze

d
H

is
t

−10 −5 −15 −10 −5 −10 −5 −10 −5 −10 −5 −15 −10 −5 −15 −10 −5 −15 −10 −5 −10 −5
0.0

0.2

0.4

0.6

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Interpolation test of the error indicator field predictions on the testing set.

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9954

True error

Network prediction

(b) Interpolation test of the output error predictions on the testing set (200 samples).

Figure 9.11: Model interpolation test on the testing dataset (scalar advection-diffusion).
Refer to Figure 9.9 and Figure 9.10 for a detailed figure interpretation.

220

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−4

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(a) (Pe, α) = (31, 48)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) (Pe, α) = (46, 33)

Figure 9.12: Comparison of the CNN model and the standard adjoint-based method in
adaptive simulations (scalar advection-diffusion). The first column shows the states on
the final adaptive meshes from the CNN model, while the second column presents the ones
from the adjoint method. The last column shows the output error convergence history in
these two methods. The solid lines are the error estimates computed by the CNN model
and the adjoint method, while the dashed lines are the “true” output error compared
to the “true” outputs obtained on the reference fine mesh with order increment, i.e.,
p→ p+ 1 = 2.

221

9.2.3.2 Extrapolation on Unseen Data

Unseen Péclet Numbers Pe For the extrapolation test, we first test the model on

unseen Péclet numbers. Keeping the advection angles α ∈ [0, 30], the testing data is

randomly sampled from Pe ∈ [51, 60]. The testing results are shown in Figure 9.13. The

model is able to predict the adaptive error indicator fields and the output errors accurately

on the testing data, indicating good generalizations on the Pe space. Again, adaptive

simulations using the CNN model and the adjoint-based approach are compared on two

samples chosen from Figure 9.13a. The comparison is shown in Figure 9.14, from which

we can see that the trained model is able to effectively drive the mesh adaptation, though

the true output error is higher than the adjoint-based method. The error estimation

provided by the CNN model is again accurate, and the accuracy is close to the adjoint-

based method.

Pe = 56, α = 45, i = 07

S
ta

te
s

Pe = 57, α = 54, i = 02 Pe = 60, α = 21, i = 14 Pe = 55, α = 42, i = 03 Pe = 58, α = 09, i = 19 Pe = 58, α = 57, i = 02 Pe = 52, α = 15, i = 06 Pe = 54, α = 45, i = 18 Pe = 57, α = 51, i = 14 Pe = 59, α = 09, i = 18

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−10 −5

N
o
rm

a
li
ze

d
H

is
t

−10 −5 −10 −5 −10 −5 −20 −15 −10 −5 −10 −5 −10 −5 −20 −15 −10 −5 −15 −10 −5 −20 −15 −10 −5
0.0

0.2

0.4

0.6

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Extrapolation test of the error indicator field predictions on the testing set (unseen Pe)

−6 −5 −4 −3 −2
True output error log(|δJ |)

−6

−5

−4

−3

−2

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9929

True error

Network prediction

(b) Extrapolation test of the output error predictions on the testing set (unseen Pe, 200 samples).

Figure 9.13: Model extrapolation test on the testing data (scalar advection-diffusion,
unseen Pe). Refer to Figure 9.9 and Figure 9.10 for a detailed figure interpretation.

222

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(a) (Pe, α) = (54, 45)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) (Pe, α) = (58, 09)

Figure 9.14: Comparison of the CNN model and the standard adjoint-based method in
adaptive simulations (scalar advection-diffusion, unseen Pe). The figures from left to
right are: final CNN adapted meshes, final adjoint-based adapted meshes, and the output
error convergence. Refer to Figure 9.12 for a more detailed figure interpretation.

Unseen Advection Angles α In this extrapolation test, the model is tested on unseen

advection angles. The testing data is sampled from α ∈ {63, 66, 69}, while keeping Pe ∈
[1, 50]. The model performance on the error indicator prediction and the output error

prediction is presented in Figure 9.15. We see that the model again generalizes well

on the error indicator field predictions but tends to underestimate the output errors in

this test. Adaptive simulations on two samples from Figure 9.15, are again compared

in Figure 9.16. As expected, the adaptation performance is comparable to the adjoint-

based method (similar “true” output error convergence on the adapted meshes), while the

error estimation provided by the CNN model is unreliable. We expect that more training

samples in the advection angle space should help generalize the model, as currently the

sample points in α space are very limited (only 21 points compared to 50 points in the Pe

space). On the other hand, given the fact that the error estimation of the adjoint-based

method in this test dataset is also less accurate, the CNN model, which is trained using

data from the adjoint-based method, is not expected to perform well in this test region

in the first place.

223

Pe = 22, α = 63, i = 09

S
ta

te
s

Pe = 26, α = 69, i = 19 Pe = 15, α = 69, i = 00 Pe = 08, α = 63, i = 19 Pe = 15, α = 69, i = 02 Pe = 07, α = 66, i = 05 Pe = 35, α = 63, i = 13 Pe = 46, α = 69, i = 05 Pe = 44, α = 66, i = 01 Pe = 38, α = 66, i = 17

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−10 −5

N
o
rm

a
li
ze

d
H

is
t

−20 −15 −10 −15 −10 −5 0 −20 −15 −10 −10 −5 −10 −5 −15 −10 −5 −15 −10 −5 −10 −5 −20 −15 −10
0.0

0.2

0.4

0.6

0.8

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Extrapolation test of the error indicator field predictions on the testing set (unseen α).

−5 −4 −3 −2
True output error log(|δJ |)

−7

−6

−5

−4

−3

−2

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.8201

True error

Network prediction

(b) Extrapolation test of the output error predictions on the testing set (unseen α, 200 samples).

Figure 9.15: Model extrapolation test on the testing data (scalar advection-diffusion,
unseen α). Refer to Figure 9.9 and Figure 9.10 for a more detailed figure interpretation.

224

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−6

10−5

10−4

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(a) (Pe, α) = (26, 69)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−5

10−4

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) (Pe, α) = (44, 66)

Figure 9.16: Comparison of the CNN model and the standard adjoint-based method in
adaptive simulations (scalar advection-diffusion, unseen α). The figures from left to right
are: final CNN adapted meshes, final adjoint-based adapted meshes, and the output error
convergence. Refer to Figure 9.12 for a more detailed figure interpretation.

225

9.3 Application in Aerodynamic Simulations Over Airfoils

In this section, we consider a more complicated problem: transonic aerodynamic flow

simulations over airfoils, which involves geometries and irregular computational domains.

Inviscid Euler equations are used as the flow governing equation. Again, we use DG with

an element-based artificial viscosity [128] to discretize the system of equations. The fully

discretized system can be written in the form of Eqn. 9.1,

R(U;µ) = 0, µ = {xs,M, α}. (9.16)

The system is parameterized by the airfoil shape parameters, xs, the freestream Mach

number M , and the angle of attack α. The output of interest J is the drag coefficient of

the airfoil, cd.

9.3.1 Data Generation and Preprocessing

In this work, we use the NACA 4-digit airfoil series [230] with closed trailing edge

to parameterize the airfoil shape. The airfoil geometry is controlled by the maximum

camber, C, in percentage of the chord, the location of the maximum camber, P , in tenths

of the chord, and the maximum airfoil thickness, T (two digits), also in percentage of

the chord. Therefore the parameter space is in five dimensions, µ = {C,P, T,M, α}. We

generate the data by sampling from C ∈ {0, 2, 4}, P = {0, 4, 6} and T ∈ {10, 12, 14} in the

airfoil shape space, resulting in 15 shapes in total since C and P can only be both zeros or

non-zeros. For the angle of attack, we uniformly sample 16 points from α ∈ [0, 3] degrees.

The Mach numbers are sampled from M ∈ [0.54, 0.68]. As the flow fields become more

complex for higher Mach numbers, we uniformly sampled 4 points from [0.54, 0.60] and 8

points from [0.61, 0.68]. In conclusion, the data set consists of Nµ = 15× 16× 12 = 2880

parameters.

At each parameter point µi, we solve the flow equations with DG p = 1 discretization

adaptively starting with a coarse “C-mesh” consisting of 10 points in height (airfoil surface

to farfield) and 24 points in width (airfoil chord and wake). The adjoint-weighted residual

is then calculated on a reference fixed fine mesh (also “C-mesh”) on the physical space with

129 points in height and 1281 points in width (128× 1280 elements). The starting coarse

mesh and the reference fine mesh are compared in Figure 9.17. We solve the state vector

and the adjoint vector again exactly on the reference fine mesh, thus the exact output

difference is recorded as the truth for the output error and the localized adjoint-weighted

residual is collected as the truth for the indicator field. In each adaptive simulation,

226

9 mesh adaptation iterations are performed, resulting in 10 data points including the

data on the initial mesh. Thus, the entire dataset has Nd = Nµ × 10 = 28800 samples.

The dataset is randomly shuffled and split into a training set of 20160 samples (70%), a

validation set of 5760 samples (20%) and a testing set of size 2880 (20%).

Similar to the scalar case considered in Section 9.2, we first average the state vector

(for every component) to reduce it to the same size as of the reference mesh nodes, i.e.,

129 × 1281. Since the state vector this time involves four components, density, x and y

momentums, and energy, we treat them as separate channels. In other words, the input

of the network will be in the dimension of H ×W ×D = 129 × 1281 × 4. On the other

hand, the error indicator field (network output) is a single channel output of the same

size as the reference mesh elements H ×W ×D = 128× 1280× 1. Meanwhile, the output

error is a scalar output of size 1. Again, a logarithmic transformation is applied to the

indicator field log(|E|) and the output error log(|δJ |) before training to scale the outputs.

Several samples from the dataset are shown in Figure 9.18, in which the second column

shows the projected state solution fields (network inputs), and the fourth column presents

the error indicator fields (network outputs), both on the fine reference mesh.

227

(a) starting coarse mesh

(b) reference fine mesh on the physical space

Figure 9.17: The starting coarse mesh for the adaptive simulation and the fixed reference
fine mesh for adjoint-weighted residual calculations. The left figures are the zoom-out
view of the meshes, while the right ones are the meshes around the airfoils. For different
airfoil shapes, the starting coarse mesh and the reference fine mesh are generated using
the same setting, e.g., mesh spacing. The reference mesh similarity among different airfoil
shapes is especially important here since the physical-reference mapping Jacobian is not
used as an input. The starting mesh, on the other hand, can be arbitrary but are made
similar for simplicity in this work.

228

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.7

0.8

0.9

1.0

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

(a) UH

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.7

0.8

0.9

1.0

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

(b) UH
h

−0.8

−0.6

−0.4

−0.2

0.0

0.2

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

−0.4

−0.2

0.0

0.2

0.4

(c) δΨh

−11

−10

−9

−8

−7

−6

−5

−4

−11

−10

−9

−8

−7

−6

−5

−4

−11

−10

−9

−8

−7

−6

−5

−10

−9

−8

−7

−6

−5

−4

−3

(d) Eh

−7

−6

−5

−4

−3

−2

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−8

−7

−6

−5

−4

−3

(e) EhH

Figure 9.18: Samples from the dataset of the airfoil problem. The first and the last columns show the state and the indicator
fields on current adapted meshes. The second and the fourth columns are the projected sates and the error indicators on the
reference mesh, used as inputs and outputs respectively in our network model. The third column depicts the adjoint variables
on the reference mesh. Only the density component of the states and the corresponding adjoint component are shown here.

229

9.3.2 Network Implementation and Training

The network is built on a rectangular Cartesian mesh on the reference space, which

is topologically equivalent to the reference fine mesh on the physical space as shown in

Figure 9.17. The network design follows the architecture proposed in Section 9.1.5, and

the detailed structure is summarized in Table 9.2. The network is implemented in Ten-

sorFlow [205] and trained with the adaptive moment estimation (Adam) algorithm [206].

The starting learning rate is set to be 0.0001, and 500 total epochs with mini-batch size of

20 are run in the training. The training and validation losses are recorded in Figure 9.19,

and the performance of the resulting model on both the training and validation datasets

is shown in Figure 9.20 and Figure 9.21.

The model shows good predictions for both the adaptive error indicator fields and the

total output errors on the training and validation set, as shown in Figure 9.20 and Fig-

ure 9.21, indicating a good generalization of the model on the unseen validation dataset.

The model performance on the testing dataset and the detailed model deployment will

be investigated in the following section.

0 100000 200000 300000 400000 500000
Mini-batch training iterations

10−1

100

101

102

M
in

i-
b

at
ch

lo
ss

es

Training loss

Training loss (smoothed)

Validation loss

Validation loss (smoothed)

Figure 9.19: Training history of the model for airfoil simulations.

230

Table 9.2: Network architecture for aerodynamic simulations over airfoils

Subnetwork Sublayer Input layer Operation Output dim Activation
Input States 129× 1281× 46

C 1
P 1
T 1
M 1
α 1

Encoder Conv1 States Convolution (F = 2× 2× 128, s = [1, 1]) 129× 1281× 128 ReLU
Conv2 Conv1 Convolution (F = 2× 4× 128, s = [2, 4]) 65× 321× 128 ReLU
Conv3 Conv2 Convolution (F = 2× 4× 128, s = [2, 4]) 33× 81× 128 ReLU
Conv4 Conv3 Convolution (F = 2× 4× 128, s = [2, 4]) 17× 21× 128 ReLU
Conv5 Conv4 Convolution (F = 4× 4× 64, s = [4, 4]) 5× 6× 64 ReLU
Flat Conv5 Reshape 1920× 1 None
Compress Flat Fully-connected 800× 1 ReLU
Codes Compress, C,P, T,M,α Concatenate 805× 1 None

Decoder Decompress Codes Fully-connected 1280× 1 ReLU
Unflat Decompress Reshape 4× 5× 64 None

Deconv1 Unflat ConvolutionT (F = 4× 4× 128, s = [4, 4]) 16× 20× 128 ReLU

Deconv2 Deconv1 ConvolutionT (F = 2× 4× 128, s = [2, 4]) 32× 80× 128 ReLU

Deconv3 Deconv2 ConvolutionT (F = 2× 4× 128, s = [2, 4]) 64× 320× 128 ReLU

Deconv4 Deconv3 ConvolutionT (F = 2× 4× 128, s = [2, 4]) 128× 1280× 128 ReLU
IndPred Deconv4 Convolution (F = 2× 2× 1, s = [1, 1]) 128× 1280× 1 None

Regressor Dense1 Codes Fully-connected 400× 1 ReLU
Dense2 Dense1 Fully-connected 200× 1 ReLU
Dense3 Dense2 Fully-connected 100× 1 ReLU
ErrEst Dense3 Fully-connected 1 None

6State rank = 4

231

(a) training set

(b) validation set

Figure 9.20: Model performance of error indicator field predictions on the training and
validation sets (aerodynamic flow over airfoils). The top row shows the Mach number
contours of the input solutions (the network inputs are the state solution fields, i.e., state
components, not the Mach number) to the network; the top caption shows the parameters
of the current data point, in which i indicates the index of the current adaptive iteration,
starting from 0. The second row presents the ground truth, while the third row contains
the predictions made by the network model. The last row compares the normalized
histograms of the predictions (orange) and the ground truth (blue).

9.3.3 Network Testing and Model Deployment

The model obtained in Section 9.3.2 is first tested on the testing set generated in

Section 9.3.1 to assess the generalization power of the model on unseen data. Then the

model is deployed in the adaptive flow solver to validate the effectiveness of the model pre-

dictions in real-time simulations. Extrapolation testes are also performed on parameters

232

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0
True output error log(|δJ |)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g(
|̃δJ
|)

Correlation factor r = 0.9999

True error

Network prediction

(a) training set

−4.0 −3.5 −3.0 −2.5 −2.0
True output error log(|δJ |)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g(
|̃δJ
|)

Correlation factor r = 0.9961

True error

Network prediction

(b) validation set

Figure 9.21: Model performance of output error predictions on the training and validation
sets (aerodynamic flow over airfoils). Each plot is generated using 200 samples randomly
sampled from the training and validation sets.

that are out of the original sampling space to further assess the model generalization.

9.3.3.1 Interpolation on Unseen Data

The Testing Dataset We first test the model on the original testing set generated

in Section 9.3.1. The performance of the model is shown in Figure 9.22, from which

good accuracy on both the adaptive error indicator field and the output error has been

observed. The model is then deployed to perform two adaptive simulations using the

parameters chosen from Figure 9.22a. Standard adjoint-based error estimation and mesh

adaptation are also performed on these two cases. Both methods start with the same

initial mesh (10 × 24 mesh nodes) which possesses similar resolution as the coarse mesh

shown in Figure 9.17.

The first testing sample is a subsonic flow over a NACA 2614 airfoil at M = 0.54 and

α = 1.2◦. The initial mesh and the final adapted meshes are compared in Figure 9.23,

together with the output error convergence plot. We can see that the trained model is

able to effectively identify important regions for the output prediction and produce a

similar final adapted mesh compared to the adjoint-based method. Although the true

output errors are slightly higher than the adjoint-based method, the same optimal su-

perconvergence rate is obtained with the CNN model. On other other hand, the CNN

model also gives good error estimation on the true output error, with accuracy compara-

ble to the adjoint-based approach. On the coarse meshes, i.e., first several adaptations,

the CNN model gives even better error estimates where the adjoint-based method is in

general inaccurate. On these meshes, the adjoint is often not well-resolved such that the

adjoint method is ineffective, while the network is trained on the “true” error measured

233

(a) Interpolation test of the error indicator field predictions on the testing set.

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g(
|̃δJ
|)

Correlation factor r = 0.9995

True error

Network prediction

(b) Interpolation test of the output error predictions on the testing set (200 samples).

Figure 9.22: Model interpolation test on the testing dataset (aerodynamic flow over air-
foils). Refer to Figure 9.20 and Figure 9.21 for a detailed figure interpretation.

234

with respect to the fine reference mesh, which turns out to be more accurate and robust

on coarse meshes.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−4

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

3

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.23: Model deployment in adaptive simulations: NACA 2614 airfoil, M =
0.54, α = 1.2◦. The Mach contour scale is [0, 0.8]. In the output error convergence
plot, the solid lines are the error estimates computed by the CNN model and the adjoint
method, while the dashed lines are the “true” output error measured with respect to the
“true” output obtained on a much finer adapted mesh with p = 2.

The second testing sample is a transonic flow over a NACA 4410 airfoil at M = 0.68

and α = 1.0◦. The flow field features a strong shock on the top surface around the middle

chord, which should be well-resolved to achieve good accuracy. The performance of the

network model is compared with adjoint-based method in Figure 9.24. The CNN model,

again, is able to guide the adaptation with a focus on important areas for the output

prediction. Similar mesh refinements around the stagnation streamline, trailing edge and

the shock location are observed on the final CNN adapted mesh when compared to the

adjoint adapted mesh, although the refinements around the shock are a little more spread

out in the CNN adapted mesh. For this problem, both methods tend to underestimate

the output error during the adaptation and the convergence rate reduces to suboptimal,

as shown in the convergence plot. Besides the poor performance on the coarse mesh,

the adjoint-based error estimates are also less accurate on the adapted meshes compared

235

to the CNN model. Since the adjoint-based error estimates are based on linearization,

it is usually less accurate in problems that are highly nonlinear, such as the transonic

flow with strong shocks. The CNN model, on the other hand, is trained with the “true”

output error measured with respect to the fine reference mesh, and thus gives better error

estimates in highly nonlinear problems.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−4

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.24: Model deployment in adaptive simulations: NACA 4410 airfoil, M =
0.68, α = 1.0◦. The Mach contour scale is [0, 1.4]. The true output error in the con-
vergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

9.3.3.2 Extrapolation on Unseen Data

Unseen Mach Numbers For the extrapolation test, we first consider Mach numbers

that are out of the original sampling space used in Section 9.3.1. The first case tested is

a subsonic flow over a NACA 0012 airfoil at M = 0.50 and α = 2.0◦. We again compare

the CNN model with the standard adjoint-based method in an adaptive simulation as

shown in Figure 9.25. The CNN model closely follows the adaptation pattern of the

adjoint-based one, although subtle difference on the leading-edge refinement can be found.

Superconvergece is observed for both the CNN and adjoint adapted meshes, while adjoint-

236

based meshes have consistent lower drag errors in the adaptation sequence. Nevertheless,

the CNN model still predicts the output error fairly well, despite some underestimations

during the adaptation sequence.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−4

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

3

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.25: Model deployment in adaptive simulations: NACA 0012 airfoil, M =
0.50, α = 2.0◦. The Mach contour scale is [0, 0.75]. The true output error in the con-
vergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

The second case considered is a transonic flow simulation over a NACA 2412 airfoil,

at M = 0.70 and α = 1.0◦. The adaptive performance of the trained CNN model and the

standard adjoint method is compared in Figure 9.26. Both methods converge suboptimally

in this case due to the strong shock involved. Although the CNN adapted meshes still

produce higher output errors than the adjoint adapted ones, the output error estimates of

the CNN model are very accurate in this case. Compared to the transonic case considered

earlier in the original testing dataset, the shock strength here is actually weaker due

to the smaller camber. Since the flow problem is less nonlinear, the error estimates

provided by both the CNN and the adjoint methods are more accurate, although the

output convergences are still suboptimal. Note that the accuracy of the CNN-based error

estimates is higher than the adjoint-based ones along the entire adaptation sequence. In

237

terms of the final adapted meshes, the CNN adapted mesh puts more refinement at the

post-shock location, while the adjoint-based one has more refinement at the trailing edge,

which turns out to be more effective as seen in the convergence plot.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−4

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.26: Model deployment in adaptive simulations: NACA 2412 airfoil, M =
0.70, α = 1.0◦. The Mach contour scale is [0, 1.4]. The true output error in the con-
vergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

Unseen Angles of Attack α Here we test the CNN model against angles of attack

that are not seen in the original sampling space. The CNN model and the adjoint-

based method are again compared in adaptive simulations. The first problem of interest

is the flow over a symmetric NACA 0010 airfoil at M = 0.60 and α = −1.0◦. Two

adaptive simulation starts with the same initial mesh, using the CNN model and the

adjoint method respectively, are compared in Figure 9.27. Although the current angle of

attack is in the region where the network is largely agnostic of, the final CNN adapted

mesh still closely follows the adaptation pattern of the adjoint method, especially the

asymmetric refinements around the trailing edge. However, CNN adapted mesh tends to

put more sharp refinements (most likely due to projection loss), resulting in sharp mesh

238

size changes around adjacent elements; while the adjoint-based adaptation produces an

adapted mesh with more continuous mesh size transitions. This difference is also present

in all of the tests performed above, although much more subtle compared to the current

case. Despite the difference in the adapted meshes, CNN model still provides acceptable

estimation for the output error.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−4

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

3

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.27: Model deployment in adaptive simulations: NACA 0010 airfoil, M =
0.60, α = −1.0◦. The Mach contour scale is [0, 0.8]. The true output error in the
convergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

The other case considered here is a transonic flow simulation over a NACA 4412

airfoil at M = 0.62 and α = 4.0◦. A strong shock is present on the upper surface, which

is significantly refined in both the adjoint and the CNN methods as shown in Figure 9.28.

In this case, the CNN mesh features more refinements along the stagnation streamline,

while the adjoint method resolves the λ-structured adjoint “shock” with considerable

refinements. Although the adaptation is less effective in the CNN adapted meshes (higher

output error), the output error estimation is more accurate than the adjoint-based method,

especially on the coarse meshes.

239

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.28: Model deployment in adaptive simulations: NACA 4412 airfoil, M =
0.62, α = 4.0◦. The Mach contour scale is [0, 1.4]. The true output error in the con-
vergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

240

Unseen Airfoil Shapes The last set of extrapolation tests are on the airfoil shapes

that are out of the sampling space used to generate the original data. We first test the

model on a NACA 3709 airfoil, which features a high camber around the aft section.

The flight condition is M = 0.66 and α = 0◦. The model performance is summarized in

Figure 9.29. The CNN model is able to produce a pretty similar final adapted mesh as

the adjoint adapted one, again with higher output error. As the flow field is very smooth

due to a zero incidence angle, both methods provide good error estimates, while the CNN

model consistently features higher accuracy in the estimates during the adaptation.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−4

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

3

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.29: Model deployment in adaptive simulations: NACA 3709 airfoil, M =
0.66, α = 0◦. The Mach contour scale is [0, 0.96]. The true output error in the con-
vergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

The last test is performed on a NACA 5715 airfoil, at M = 0.62 and α = 1.0◦. Final

adapted meshes and output error convergence for the CNN model and the adjoint-based

method are compared in Figure 9.30. Although the airfoil possesses a greater thickness

and a higher camber, the shock strength is not too strong as the Mach number and the

angle of attack considered are relatively low. As a result, both methods produce acceptable

estimates for the output error, while the CNN model in general has a higher accuracy in

241

the estimates. In terms of the adapted meshes, both methods refine the areas around the

strong shock on the upper surface as well as the re-acceleration region caused by the high

aft-section comber. However, the CNN model focuses more on the re-acceleration region

while the adjoint method resolves more the shock. The refinements at the leading and

trailing edges are similar for both methods.

(a) initial mesh

2× 10−2 3× 10−2 4× 10−2 6× 10−2

h = 1/
√
Ne

10−3

10−2

D
ra

g
ou

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) drag error convergence

(c) CNN adapted mesh (d) adjoint adapted mesh

Figure 9.30: Model deployment in adaptive simulations: NACA 5715 airfoil, M =
0.62, α = 1.0◦. The Mach contour scale is [0, 1.4]. The true output error in the con-
vergence plot is measured with respect to the “true” output obtained on a much finer
adapted mesh with p = 2.

9.4 Summary

Most of the output-based adaptation techniques strongly depend on the output ad-

joint solution as it provides a robust approach to quantify the output error and to localize

the error for adaptation purposes. However, besides the high implementation cost, the

additional computational cost associated with the adjoint solves cannot be ignored. We

proposed a new method based on machine learning techniques for output error estima-

tion and mesh adaptation to avoid solving for adjoint variables. The goal is to directly

242

predict the output error and the adaptive error indicator field from the solution field on a

coarse mesh. A composite encoder-decoder type convolutional neural network, containing

both convolutional and fully-connected layers, is used to construct the surrogate model.

Traditional CNNs are often built on fixed Cartesian grids and thus are not readily useful

for irregular domains or unstructured meshes or in an adaptive setting. To address this

incompatibility, topology mapping is applied to transfer the model learning process into

the reference space where a fixed Cartesian mesh can always be constructed. The feasi-

bility of the proposed method has been demonstrated in both scalar advection-diffusion

problems and inviscid flow simulations over airfoils.

The CNN model is trained using data from adjoint-based adaptation, in which a fixed

fine mesh in the physical space is used as the finer space instead of order increments. A

properly-trained model is able to accurately predict the adaptive error indicator field as

well as the output error on unseen data in the interpolation test. The generalization of

the adaptive error indicator prediction in the extrapolation regions is fairly good for both

the scalar advection diffusion and the airfoil flow problems. The CNN adapted meshes

closely follow the adaptation pattern of the adjoint-based method, although the mesh

effectiveness is consistently lower than the adjoint-based ones, i.e., higher output error.

The generalization of the adaptive error indicator strongly depends on the performance

of the adjoint-based method, and the model performance reduces if the adjoint-based

method is not effective, e.g., in highly nonlinear problems. This is expected as the model

is trained on the adjoint-based adaptation data. In contrast, the output error model

uses the exact difference between the coarse and fine spaces as the training data. As a

result, its performance mostly depends on the data sampling and the problem complexity.

When the parameter space is not well sampled or if the extrapolation point is far from the

sampled training data, the model does not generalize well in the output error estimation,

which has been found in the scalar advection diffusion problem. On the other hand, for

complex problems, such as highly nonlinear cases, the accuracy of the error prediction also

decreases. However, the performance of the CNN error estimation has been found to be

better in these problems compared to the adjoint-based error estimates. The reason is that

the adjoint method uses output linearization and assumes small residual perturbations

for the estimates, which are often invalid for highly nonlinear problems or when the mesh

is coarse; The CNN model, on the other hand, directly learns the output error model

from the exact difference measured with respect to a very fine mesh. Therefore, the CNN

model tends to have more accurate error estimates on coarse meshes and are more robust

in highly nonlinear problems.

Presently, the network is not finely tuned, better performance may be obtained with

243

more tuning. Additionally, advanced training techniques such as batch normalization and

dropout can also be used to improve the training efficiency and to improve the model per-

formance. Furthermore, the symmetry of the encoder and decoder sub-networks suggests

sharing the network parameters through the corresponding layers, which can substantially

reduce the number of parameters and improve the training efficiency. Sparsity constraints

of the latent space codes can also be added into the training loss to force the network to

learn independent embedded representations. These research directions will be investi-

gated in the future.

244

CHAPTER 10

Conclusions and Future Work

10.1 Summary and Conclusions

The work presented in this dissertation was motivated by the need for automated,

reliable, and efficient computational fluid dynamic tools in aerodynamic design problems.

With the emerging need for high-fidelity optimization and the development of unconven-

tional configurations, the meshing process is often considered as a bottleneck for design

automation. Furthermore, it is in general hard to evaluate the solution quality on a

computational mesh and hence the optimized design due to unquantified discretization

errors, even when the physical models are well chosen. Without properly quantifying or

controlling the discretization errors, the optimization might converge to incorrect optima

or work on the discretization errors instead of the physics, which significantly reduces the

reliability and the efficiency of the optimization. Solution adaptive techniques, specifi-

cally the output-based mesh adaptation driven by adjoint-weighted residual are therefore

introduced to address these issues. With automatic mesh adaptation, fairly coarse meshes

can be used to start the optimization. Meanwhile, the discretization error can be actively

quantified and controlled during the optimization with output-based error estimation and

mesh adaptation. Although the optimization setup can be significantly accelerated and

the solution accuracy can be greatly improved, the error estimation and mesh adaptation

themselves add extra computational cost by solving the adjoint problem on an enriched

space. Luckily, if adjoint-based sensitivity analysis is used, this additional computational

burden can be mitigated by reuse of the adjoint solutions. In order to further improve

the computational efficiency, multifidelity optimization frameworks are developed on the

adapted meshes to efficiently incorporate the adaptive CFD methods with traditional

gradient-based optimization. The proposed optimization frameworks with adaptive CFD

techniques are demonstrated in several single-point airfoil optimization problems, show-

ing desirable accuracy and efficiency when compared to traditional methods. Extensions

245

of the proposed frameworks are then made to tackle more complicated multipoint op-

timization problems. Individually adapted meshes on different operating conditions are

adopted, with global mesh degrees of freedom redistribution among different operating

conditions to further improve the overall accuracy and efficiency.

Although adjoint-based adaptive CFD has shown success in many aerospace appli-

cations, including the aerodynamic optimization problems considered in this work, the

additional computational costs of the error estimation and mesh adaptation cannot be

ignored, especially when the adjoint solution is not required by the original problem it-

self, such as gradient-free optimizations, or when the adjoint is unavailable. On the other

hand, software complexity, i.e., the implementation cost, has prevented the widespread

use of output-based error estimation and mesh adaptation in practice. For example, the

anisotropic mesh optimization method used in the current work requires a complicated

sampling procedure, which either involves cumbersome mesh operations or complex pro-

jections. In order to accelerate the adaptive CFD techniques and to reduce the implemen-

tation complexity, the second half of the dissertation focuses on developing alternatives

for standard mesh adaptation algorithms, where non-intrusive models based on machine

learning techniques are introduced. To facilitate the anisotropic mesh adaptation, a mesh

anisotropy detection model built on artificial neural networks (ANNs) is first developed.

Trained using the data from standard mesh optimization techniques, the model is able to

predict the mesh anisotropy directly from the primal and adjoint solution features without

the sampling process. Good performance is observed on a wide range of problems involv-

ing different geometries and flight conditions, although the adjoint-weighted residual is

still needed to provide adaptive error indicators for mesh sizing control. Inspired by the

success of the anisotropy detection, more advanced convolutional neural networks (CNNs)

are used to build a surrogate model to predict both the output error and the localized er-

ror indicator field directly from the solution field, without access to adjoint solutions. An

encoder-decoder type CNN is adopted for constructing the high-dimensional map from the

solution field to the error indicator field, together with fully-connected layers for output

error predictions. The network trained with data from adjoint-based adaptations shows

good performance and generalizes well when used in real-time adaptive simulations.

As a summary, the main observations and contributions of the current work are:

• The optimization accuracy is bounded by both the discretization error and the

optimization tolerance, which should be well balanced to achieve optimal accuracy

and efficiency.

• Discretization errors in the objective output calculations can produce spurious op-

246

tima, and, if not properly controlled, may lead to undesired designs purely caused

by the numerical errors.

• The optimization tolerance, without reliable estimate of the discretization errors, is

often set to be very tight in the optimization. As a result, the optimizer in general

converges to a design close to the true optimum as long as the discretization error

is not overly high. However, the detailed design made by the optimizer might be

working on the discretization error instead of physics when the discretization errors

dominate the objective changes.

• In order to achieve optimal accuracy and efficiency, an equidistribution strategy

between the discretization error and the optimization tolerance is adopted in this

work. Although more computational efficiency gains can possibly be achieved by

allowing more optimizations on a given error level, it usually only helps improve the

design while not the objective accuracy. If the objective accuracy is also important

for subsequent design analysis, the equidistribution strategy is considered optimal.

• An adjoint-weighted residual is introduced to provide reliable estimates for objective

errors in optimization problems. To account for the effects of constraint output

errors on objective predictions, coupled adjoints are used to estimate the objective

error and guide the mesh adaptation.

• Thanks to automatic mesh adaptation, coarse meshes that are much easier to gen-

erate can be used to start the optimization, even for problems involve fairly com-

plicated physics. Furthermore, the mesh adaptation driven by error estimation

actively controls the objective errors in the optimization, preventing convergence to

undesired designs due to numerical errors.

• Multifidelity optimization frameworks are developed to efficiently integrate the error

estimation and mesh adaptation with gradient-based optimization, taking advantage

of the variable fidelity offered by adaptive meshes. The proposed frameworks follow

the equidistribution of the optimization tolerance and the discretization error to

achieve optimal accuracy with a given cost.

• Extensions to multipoint problems are made to accommodate optimization problems

involving multiple flight conditions. Individual mesh at each flight condition is used,

starting from the same coarse mesh, but is adapted independently at each flight

condition. Global mesh degrees of freedom are redistributed among different flight

conditions to achieve optimal accuracy and efficiency.

247

• The proposed frameworks showed good performance on both the single-point and

the multipoint aerodynamic optimization problems considered. Both accuracy and

efficiency gains are achieved compared to traditional optimization with fixed meshes.

• Cost-based integration of the mesh adaptation and optimization in general out-

performs the error-based approach. In terms of the adaptation mechanics, mesh

optimization via error sampling and synthesis (MOESS) often outperforms Hessian-

based adaptation in more complex problems due to better anisotropy detection.

• To reduce the implementation cost and mitigate the possible computational over-

head in the sampling procedure of MOESS, a mesh anisotropy model that predicts

the optimal mesh anisotropy directly from the solution and adjoint features are de-

veloped using ANNs. With carefully design of the input and output features, the

ANN anisotropy model generalizes well in a wide range of geometries and flight

conditions.

• Although trained using the data from MOESS, the ANN model consistently achieve

better output error convergence compared to MOESS in real-time adaptive sim-

ulations. This performance gains are most likely attributed to the regularization

effects of the model such that it is less biased to extreme values or singularities in

the primal and adjoint solutions.

• Although the ANN anisotropy model can effectively guide the anisotropic adapta-

tion, it still relies on the adjoint-weighted residual to provide localized error indi-

cators for element sizing control. An encoder-decoder type of CNN architecture is

hence introduced to construct a direct map from the solution field to adaptive error

indicators as well as the total output error, without solving for adjoint variables.

• Topology mapping is used to handle irregular computational domains that are often

present in physical modeling but are incompatible with traditional CNN models.

The proposed network structure has the potential to handle multi-scale problems

with the physical-reference mapping.

• Trained on the data from adjoint-based adaptive simulations, the CNN model is able

to provide effective error indicators in adaptive simulations and generalizes well on

unseen geometries and flow conditions.

248

10.2 Future Work

In this dissertation, we have demonstrated the accuracy and efficiency benefits of

adaptive CFD in aerodynamic optimization problems. To help reduce the possible com-

putational and implementation overhead, non-intrusive models based on machine learning

techniques have also been developed to accelerate the error estimation and mesh adapta-

tion. In the meantime, several issues and potential improvements have also been identified

during the current work, which are considered essential to fully exploit the potential of

adaptive CFD in practical design process. They are summarized below:

• Optimal Discretization Error and Optimization Tolerance Balance

In this work the focus is not only the accuracy on the design itself but also the

accuracy on the final objective values, hence an equidistribution strategy between

the optimization tolerance and the discretization error is adopted. But for general

optimizations in practice, sometimes the objective accuracy is less of a concern.

In these scenarios, more optimization should be allowed given an estimated error

level. However, design feasibility my bear less discretization errors than the design

optimality, since the constraint satisfactions depend more on the absolute output

predictions. Therefore, the optimal balance between the discretization error and

the optimization tolerance is rather complicated and more detailed investigation is

required.

• Mesh Deformation for Highly-Anisotropic Meshes

Excessive anisotropic mesh clustering is often found in boundary layers for high

Reynolds number turbulent flows, which poses challenges for the mesh deformation

during the optimization, especially when curved unstructured meshes are used. The

mesh deformation techniques used in the current work has already exhibited prob-

lems such as negative volumes in our test cases. The situation can be even worse for

curved boundary meshes in three-dimensional problems. To make anisotropic adap-

tive meshes more robust in aerodynamic optimization, more efforts are needed for

improving the mesh deformation techniques, specifically for high-order anisotropic

unstructured meshes.

• More Advanced Mesh Adaptation Mechanics

A representative flow field of transonic aerodynamic optimization problems often

features both strong discontinuities, i.e., shocks, and smooth flow features like flow

acceleration regions and wakes. Incorporating order and mesh adaptation, i.e., h-p

adaptation, is expected to be more effective than the h adaptation itself. However,

249

more algorithmic work has to be done for efficient integration of the adaptation

methods with optimization frameworks.

• Mesh Size Predictions in Anisotropic Adaptation

In the ANN mesh anisotropy model developed in this work, the mesh sizing control

still relies on the adjoint-weighted residual. Although the implementation cost is

largely reduced by avoiding the tedious sampling procedure, the computational cost

saving is still limited. Element size predictions embedded in the anisotropy model

based on ANNs will be more favorable in practice.

• Handling Multi-Scale Problems in CNN Models

For complicated flow problems such as high Reynolds number turbulent flows, the

ability of handling multi-scale flow features is essential. Although the CNN model

proposed in the current work has the ability to handle multi-scale problems through

the physical-reference mapping, it requires the mapping information as input fea-

tures and is not implemented yet. Moreover, the physical-reference mapping in-

formation, e.g., the mapping Jacobian, is most likely to vary dramatically in the

computational domain. Proper normalization is required to accelerate the model

training and help generalize the model.

• Non-Intrusive Model Deployment in Aerodynamic Optimization

The non-intrusive models based on machine learning techniques have been tested

and shown effectiveness in standalone adaptive simulations, while the performance

when coupling with aerodynamic optimization problems still requires more studies.

250

BIBLIOGRAPHY

[1] de Juniac, A., “IATA Annual Review 2019,” Tech. Rep. 75th Annual General Meet-

ing, International Air Transport Association, Seoul, Korea, June 2019, Retrieved

from https://www.iata.org/en/publications/annual-review (2020-02-21).

[2] “Commercial Market Outlook 2019-2038,” Tech. rep., Boeing Company, Chicago,

United States, 2019, Retrieved from https://www.boeing.com/commercial/mark

et/commercial-market-outlook (2020-02021).

[3] “Global Market Forecast 2019-2038: Cities, Airports & Aircraft,” Tech. rep., Airbus,

Blagnac Cedex, France, Aug. 2019, Retrieved from https://www.airbus.com/air

craft/market/global-market-forecast.html (2020-02-21).

[4] “Market Outlook 2019-2038,” Tech. rep., Embraer, São José dos Campos, Brazil,

2019, Retrieved from https://www.embraermarketoutlook2019.com (2020-02-21).

[5] “Economic Impacts of COVID-19 on Civil Aviation,” Tech. rep., International Civil

Aviation Organization, Montréal, Canada, 2019, Retrieved from https://www.ic

ao.int/sustainability/Pages/Economic-Impacts-of-COVID-19.aspx (2020-

05-23).

[6] “Safely Restarting Aviation: ACI and IATA Joint Approach,” Tech. rep., Inter-

national Civil Aviation Organization and Aiports Council International, 2020, Re-

trieved from https://www.iata.org/contentassets/5c8786230ff34e2da406c72

a52030e95/safely-restart-aviation-joint-aci-iata-approach.pdf (2020-

05-23).

[7] “ICAO Environmental Report 2019: Aviation and Environment,” Tech. rep., In-

ternational Civil Aviation Organization, Montréal, Canada, 2019, Retrieved from

https://www.icao.int/environmental-protection/Pages/envrep2019.asp

x (2020-02-21).

251

https://www.iata.org/en/publications/annual-review
https://www.boeing.com/commercial/market/commercial-market-outlook
https://www.boeing.com/commercial/market/commercial-market-outlook
https://www.airbus.com/aircraft/market/global-market-forecast.html
https://www.airbus.com/aircraft/market/global-market-forecast.html
https://www.embraermarketoutlook2019.com
https://www.icao.int/sustainability/Pages/Economic-Impacts-of-COVID-19.aspx
https://www.icao.int/sustainability/Pages/Economic-Impacts-of-COVID-19.aspx
https://www.iata.org/contentassets/5c8786230ff34e2da406c72a52030e95/safely-restart-aviation-joint-aci-iata-approach.pdf
https://www.iata.org/contentassets/5c8786230ff34e2da406c72a52030e95/safely-restart-aviation-joint-aci-iata-approach.pdf
https://www.icao.int/environmental-protection/Pages/envrep2019.aspx
https://www.icao.int/environmental-protection/Pages/envrep2019.aspx

[8] “Fact Sheet: Climate Change & CORSIA,” Tech. rep., International Air Transport

Association, Montréal, Canada, May 2018, Retrieved from https://www.iata.org

/en/iata-repository/pressroom/fact-sheets/fact-sheet---industry-stat

istics (2020-02-21).

[9] Graver, B., Zhang, K., and Rutherford, D., “CO2 emissions from commercial avia-

tion, 2018,” Tech. rep., The International Council on Clean Transportation, Sept.

2019, Retrieved from https://theicct.org/sites/default/files/publicatio

ns/ICCT CO2-commercl-aviation-2018 20190918.pdf (2020-02-21).

[10] “Fact Sheet: Industry Statistics,” Tech. rep., International Air Transport Associ-

ation, Montréal, Canada, Dec. 2019, Retrieved from https://www.iata.org/e

n/iata-repository/pressroom/fact-sheets/fact-sheet---climate-chang

e (2020-02-21).

[11] Borsky, P. N., “Community Reactions to Sonic Booms in the Oklahoma City Area,”

Tech. rep., National Opinion Research Center, New York, United States, Feb. 1965,

Retrieved from https://apps.dtic.mil/docs/citations/AD0613620 (2020-02-

22).

[12] Rutherford, D., Graver, B., and Chen, C., “Noise and climate impacts of an uncon-

strained commercial supersonic network,” Tech. rep., The International Council on

Clean Transportation, Jan. 2019, Retrieved from https://theicct.org/sites/de

fault/files/publications/Supersonic Impact Working Paper 20190130.pd

f (2020-02-21).

[13] “Beginner’s Guide to Aviation efficiency,” Tech. rep., Air Transport Action Group,

Geneva, Switzerland, Nov. 2010, Retrieved from https://www.atag.org/our-pub

lications/latest-publications.html (2020-02-21).

[14] “ICAO Environmental Report 2010: Aviation and Climate Change,” Tech. rep.,

International Civil Aviation Organization, Montréal, Canada, 2010, Retrieved from

https://www.icao.int/environmental-protection/Pages/EnvReport10.as

px (2020-02-21).

[15] Liebeck, R. H., “Design of the Blended Wing Body Subsonic Transport,” Journal

of Aircraft , Vol. 41, No. 1, Jan. 2004, pp. 10–25, doi:10.2514/1.9084.

[16] Wolkovitch, J., “The Joined Wing: An Overview,” Journal of Aircraft , Vol. 23,

No. 3, March 1986, pp. 161–178, doi:10.2514/3.45285.

252

https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---industry-statistics
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---industry-statistics
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---industry-statistics
https://theicct.org/sites/default/files/publications/ICCT_CO2-commercl-aviation-2018_20190918.pdf
https://theicct.org/sites/default/files/publications/ICCT_CO2-commercl-aviation-2018_20190918.pdf
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---climate-change
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---climate-change
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---climate-change
https://apps.dtic.mil/docs/citations/AD0613620
https://theicct.org/sites/default/files/publications/Supersonic_Impact_Working_Paper_20190130.pdf
https://theicct.org/sites/default/files/publications/Supersonic_Impact_Working_Paper_20190130.pdf
https://theicct.org/sites/default/files/publications/Supersonic_Impact_Working_Paper_20190130.pdf
https://www.atag.org/our-publications/latest-publications.html
https://www.atag.org/our-publications/latest-publications.html
https://www.icao.int/environmental-protection/Pages/EnvReport10.aspx
https://www.icao.int/environmental-protection/Pages/EnvReport10.aspx
http://dx.doi.org/10.2514/1.9084
http://dx.doi.org/10.2514/3.45285

[17] Pfenninger, W., “Design Considerations of Large Subsonic Long Range Trans-

port Airplanes with Low Drag Boundary Layer Suction,” Tech. Rep. NAI-58-529,

Northrop Aircraft, Inc., 1958.

[18] Drela, M., “Development of the D8 Transport Configuration,” 29th AIAA Applied

Aerodynamics Conference, AIAA Paper 2011-3907, June 2011, doi:10.2514/6.20

11-3970.

[19] Clark, L. and Gerhold, C., “Inlet noise reduction by shielding for the blended-wing-

body airplane,” 5th AIAA/CEAS Aeroacoustics Conference and Exhibit , AIAA Pa-

per 1999-1937, May 1999, doi:10.2514/6.1999-1937.

[20] Lyu, Z. and Martins, J. R. R. A., “Aerodynamic Design Optimization Studies of

a Blended-Wing-Body Aircraft,” Journal of Aircraft , Vol. 51, No. 5, Sept. 2014,

pp. 1604–1617, doi:10.2514/1.c032491.

[21] Peigin, S. and Epstein, B., “Computational Fluid Dynamics Driven Optimization of

Blended Wing Body Aircraft,” AIAA Journal , Vol. 44, No. 11, Nov. 2006, pp. 2736–

2745, doi:10.2514/1.19757.

[22] Gallman, J. W., Smith, S. C., and Kroo, I. M., “Optimization of joined-wing air-

craft,” Journal of Aircraft , Vol. 30, No. 6, Nov. 1993, pp. 897–905, doi:10.2514/3.

46432.

[23] Gagnon, H. and Zingg, D. W., “Euler-Equation-Based Drag Minimization of Un-

conventional Aircraft Configurations,” Journal of Aircraft , Vol. 53, No. 5, Sept.

2016, pp. 1361–1371, doi:10.2514/1.c033591.

[24] Ivaldi, D., Secco, N. R., Chen, S., Hwang, J. T., and Martins, J., “Aerodynamic

Shape Optimization of a Truss-Braced-Wing Aircraft,” 16th AIAA/ISSMO Multi-

disciplinary Analysis and Optimization Conference, AIAA Paper 2015-3436, June

2015, doi:10.2514/6.2015-3436.

[25] Secco, N. R. and Martins, J. R. R. A., “RANS-Based Aerodynamic Shape Optimiza-

tion of a Strut-Braced Wing with Overset Meshes,” Journal of Aircraft , Vol. 56,

No. 1, Jan. 2019, pp. 217–227, doi:10.2514/1.c034934.

[26] Yutko, B. M., Titchener, N., Courtin, C., Lieu, M., Wirsing, L., Tylko, J., Jeffrey,

C. T., Roberts, T. W., and Church, C. S., “Conceptual Design of a D8 Commercial

Aircraft,” 17th AIAA Aviation Technology, Integration, and Operations Conference,

AIAA Paper 2017-3509, June 2017, doi:10.2514/6.2017-3590.

253

http://dx.doi.org/10.2514/6.2011-3970
http://dx.doi.org/10.2514/6.2011-3970
http://dx.doi.org/10.2514/6.1999-1937
http://dx.doi.org/10.2514/1.c032491
http://dx.doi.org/10.2514/1.19757
http://dx.doi.org/10.2514/3.46432
http://dx.doi.org/10.2514/3.46432
http://dx.doi.org/10.2514/1.c033591
http://dx.doi.org/10.2514/6.2015-3436
http://dx.doi.org/10.2514/1.c034934
http://dx.doi.org/10.2514/6.2017-3590

[27] Hicks, R. M., Murman, E. M., and Vanderplaats, G. N., “An assessment of airfoil

design by numerical optimization,” Tech. Rep. NASA-TM-X-3092, NASA Ames

Research Center, Moffett Field, California, United States, July 1974, Available at

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740020369.pd

f.

[28] Hicks, R. M. and Henne, P. A., “Wing Design by Numerical Optimization,” Journal

of Aircraft , Vol. 15, No. 7, July 1978, pp. 407–412, doi:10.2514/3.58379.

[29] Hussaini, M. Y., van Leer, B., and Rosendale, J. V., editors, Upwind and High-

Resolution Schemes , Springer Berlin Heidelberg, 1997, doi:10.1007/978-3-642-60

543-7.

[30] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The complex-step derivative

approximation,” ACM Transactions on Mathematical Software (TOMS), Vol. 29,

No. 3, Sept. 2003, pp. 245–262, doi:10.1145/838250.838251.

[31] Griewank, A. and Walther, A., Evaluating Derivativesi: Principles and Techniques

of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, Jan.

2008, doi:10.1137/1.9780898717761.

[32] Jameson, A., “Aerodynamic design via control theory,” Journal of Scientific Com-

puting , Vol. 3, No. 3, September 1988, pp. 233–260, doi:10.1007/bf01061285.

[33] Jameson, A., “Computational Aerodynamics for Aircraft Design,” Science, Vol. 245,

No. 4916, July 1989, pp. 361–371, doi:10.1126/science.245.4916.361.

[34] Jameson, A., “Automatic design of transonic airfoils to reduce the shock induced

pressure drag,” 31st Israel Annual Conference on Aviation and Aeronautics , Tel

Aviv, Feb. 1990, pp. 5–17, Available at http://aero-comlab.stanford.edu/Pap

ers/jameson 133.pdf.

[35] Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J., and Saunders, D.,

“Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint For-

mulation and Parallel Computers, Part 1,” Journal of Aircraft , Vol. 36, No. 1,

January 1999, pp. 51–60, doi:10.2514/2.2413.

[36] Reuther, J. J., Jameson, A., Alonso, J. J., Rimllnger, M. J., and Saunders, D.,

“Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint For-

mulation and Parallel Computers, Part 2,” Journal of Aircraft , Vol. 36, No. 1,

January 1999, pp. 61–74, doi:10.2514/2.2414.

254

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740020369.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740020369.pdf
http://dx.doi.org/10.2514/3.58379
http://dx.doi.org/10.1007/978-3-642-60543-7
http://dx.doi.org/10.1007/978-3-642-60543-7
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1007/bf01061285
http://dx.doi.org/10.1126/science.245.4916.361
http://aero-comlab.stanford.edu/Papers/jameson_133.pdf
http://aero-comlab.stanford.edu/Papers/jameson_133.pdf
http://dx.doi.org/10.2514/2.2413
http://dx.doi.org/10.2514/2.2414

[37] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “High-Fidelity Aerostructural

Design Optimization of a Supersonic Business Jet,” Journal of Aircraft , Vol. 41,

No. 3, May 2004, pp. 523–530, doi:10.2514/1.11478.

[38] Anderson, W. and Venkatakrishnan, V., “Aerodynamic design optimization on

unstructured grids with a continuous adjoint formulation,” Computers & Fluids ,

Vol. 28, No. 4-5, May 1999, pp. 443–480, doi:10.1016/s0045-7930(98)00041-3.

[39] Nielsen, E. J. and Anderson, W. K., “Aerodynamic Design Optimization on Un-

structured Meshes Using the Navier-Stokes Equations,” AIAA Journal , Vol. 37,

No. 11, Nov. 1999, pp. 1411–1419, doi:10.2514/2.640.

[40] Buckley, H. P. and Zingg, D. W., “Approach to Aerodynamic Design Through

Numerical Optimization,” AIAA Journal , Vol. 51, No. 8, Aug. 2013, pp. 1972–1981,

doi:10.2514/1.j052268.

[41] Osusky, L., Buckley, H., Reist, T., and Zingg, D. W., “Drag Minimization Based on

the Navier–Stokes Equations Using a Newton–Krylov Approach,” AIAA Journal ,

Vol. 53, No. 6, June 2015, pp. 1555–1577, doi:10.2514/1.j053457.

[42] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape Opti-

mization Investigations of the Common Research Model Wing Benchmark,” AIAA

Journal , Vol. 53, No. 4, April 2015, pp. 968–985, doi:10.2514/1.j053318.

[43] Cliff, S. E., Reuther, J. J., Saunders, D. A., and Hicks, R. M., “Single-Point and

Multipoint Aerodynamic Shape Optimization of High-Speed Civil Transport,” Jour-

nal of Aircraft , Vol. 38, No. 6, November 2001, pp. 997–1005, doi:10.2514/2.2886.

[44] Kenway, G. K. W. and Martins, J. R. R. A., “Multipoint Aerodynamic Shape

Optimization Investigations of the Common Research Model Wing,” AIAA Journal ,

Vol. 54, No. 1, January 2016, pp. 113–128, doi:10.2514/1.j054154.

[45] Nadarajah, S. K. and Jameson, A., “Optimum Shape Design for Unsteady Flows

with Time-Accurate Continuous and Discrete Adjoint Method,” AIAA Journal ,

Vol. 45, No. 7, July 2007, pp. 1478–1491, doi:10.2514/1.24332.

[46] Hicken, J. E. and Zingg, D. W., “Aerodynamic Optimization Algorithm with Inte-

grated Geometry Parameterization and Mesh Movement,” AIAA Journal , Vol. 48,

No. 2, Feb. 2010, pp. 400–413, doi:10.2514/1.44033.

255

http://dx.doi.org/10.2514/1.11478
http://dx.doi.org/10.1016/s0045-7930(98)00041-3
http://dx.doi.org/10.2514/2.640
http://dx.doi.org/10.2514/1.j052268
http://dx.doi.org/10.2514/1.j053457
http://dx.doi.org/10.2514/1.j053318
http://dx.doi.org/10.2514/2.2886
http://dx.doi.org/10.2514/1.j054154
http://dx.doi.org/10.2514/1.24332
http://dx.doi.org/10.2514/1.44033

[47] Zingg, D. W., Nemec, M., and Pulliam, T. H., “A comparative evaluation of ge-

netic and gradient-based algorithms applied to aerodynamic optimization,” Euro-

pean Journal of Computational Mechanics , Vol. 17, No. 1-2, Jan. 2008, pp. 103–126,

doi:10.3166/remn.17.103-126.

[48] Lyu, Z., Xu, Z., and Martins, J., “Benchmarking optimization algorithms for wing

aerodynamic design optimization,” 8th International Conference on Computational

Fluid Dynamics , ICCFD8-2014-0203, Chengdu, Sichuan, China, July 2014.

[49] Perez, R. E., Jansen, P. W., and Martins, J. R. R. A., “pyOpt: A Python-Based

Object-Oriented Framework for Nonlinear Constrained Optimization,” Structures

and Multidisciplinary Optimization, Vol. 45, No. 1, 2012, pp. 101–118, doi:10.100

7/s00158-011-0666-3.

[50] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for

Large-Scale Constrained Optimization,” SIAM Review , Vol. 47, No. 1, Jan. 2005,

pp. 99–131, doi:10.1137/s0036144504446096.

[51] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-

napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt,

S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J.,

Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E. W.,

Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quin-

tero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van

Mulbregt, P., and Contributors, S. . ., “SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python,” Nature Methods , Vol. 17, 2020, pp. 261–272,

doi:https://doi.org/10.1038/s41592-019-0686-2.

[52] Masters, D. A., Taylor, N. J., Rendall, T., Allen, C. B., and Poole, D. J., “Review

of Aerofoil Parameterisation Methods for Aerodynamic Shape Optimisation,” 53rd

AIAA Aerospace Sciences Meeting , AIAA Paper 2015-0716, Jan. 2015, doi:10.251

4/6.2015-0761.

[53] MM, S. and RP, K., “Mesh Deformation Approaches – A Survey,” Journal of Phys-

ical Mathematics , Vol. 7, No. 2, 2016, doi:10.4172/2090-0902.1000181.

[54] Michal, T., Babcock, D., Kamenetskiy, D., Krakos, J., Mani, M., Glasby, R., Erwin,

T., and Stefanski, D. L., “Comparison of Fixed and Adaptive Unstructured Grid

Results for Drag Prediction Workshop 6,” Journal of Aircraft , Vol. 55, No. 4, July

2018, pp. 1420–1432, doi:10.2514/1.c034491.

256

http://dx.doi.org/10.3166/remn.17.103-126
http://dx.doi.org/10.1007/s00158-011-0666-3
http://dx.doi.org/10.1007/s00158-011-0666-3
http://dx.doi.org/10.1137/s0036144504446096
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.2514/6.2015-0761
http://dx.doi.org/10.2514/6.2015-0761
http://dx.doi.org/10.4172/2090-0902.1000181
http://dx.doi.org/10.2514/1.c034491

[55] Martins, J., “Perspectives on aerodynamic design optimization,” AIAA Scitech 2020

Forum, AIAA Paper 2020-0043, Jan. 2020, doi:10.2514/6.2020-0043.

[56] LeDoux, S. T., Vassberg, J. C., Young, D. P., Fugal, S., Kamenetskiy, D., Huffman,

W. P., Melvin, R. G., and Smith, M. F., “Study Based on the AIAA Aerodynamic

Design Optimization Discussion Group Test Cases,” AIAA Journal , Vol. 53, No. 7,

July 2015, pp. 1910–1935, doi:10.2514/1.j053535.

[57] Destarac, D., Carrier, G., Anderson, G. R., Nadarajah, S., Poole, D. J., Vassberg,

J. C., and Zingg, D. W., “Example of a Pitfall in Aerodynamic Shape Optimization,”

AIAA Journal , Vol. 56, No. 4, April 2018, pp. 1532–1540, doi:10.2514/1.j056128.

[58] Levy, D. W., Zickuhr, T., Vassberg, J., Agrawal, S., Wahls, R. A., Pirzadeh, S.,

and Hemsch, M. J., “Data Summary from the First AIAA Computational Fluid

Dynamics Drag Prediction Workshop,” Journal of Aircraft , Vol. 40, No. 5, Sept.

2003, pp. 875–882, doi:10.2514/2.6877.

[59] Laflin, K. R., Klausmeyer, S. M., Zickuhr, T., Vassberg, J. C., Wahls, R. A., Mor-

rison, J. H., Brodersen, O. P., Rakowitz, M. E., Tinoco, E. N., and Godard, J.-L.,

“Data Summary from Second AIAA Computational Fluid Dynamics Drag Predic-

tion Workshop,” Journal of Aircraft , Vol. 42, No. 5, Sept. 2005, pp. 1165–1178,

doi:10.2514/1.10771.

[60] Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld, B., Wahls, R. A.,

Morrison, J. H., Zickuhr, T., Laflin, K. R., and Mavriplis, D. J., “Abridged Sum-

mary of the Third AIAA Computational Fluid Dynamics Drag Prediction Work-

shop,” Journal of Aircraft , Vol. 45, No. 3, May 2008, pp. 781–798, doi:10.2514/1.

30572.

[61] Vassberg, J., Tinoco, E., Mani, M., Rider, B., Zickuhr, T., Levy, D., Brodersen,

O., Eisfeld, B., Crippa, S., Wahls, R., Morrison, J., Mavriplis, D., and Murayama,

M., “Summary of the Fourth AIAA CFD Drag Prediction Workshop,” 28th AIAA

Applied Aerodynamics Conference, AIAA Paper 2010-4547, June 2010, doi:10.251

4/6.2010-4547.

[62] Levy, D. W., Laflin, K. R., Tinoco, E. N., Vassberg, J. C., Mani, M., Rider, B., Rum-

sey, C. L., Wahls, R. A., Morrison, J. H., Brodersen, O. P., Crippa, S., Mavriplis,

D. J., and Murayama, M., “Summary of Data from the Fifth Computational Fluid

Dynamics Drag Prediction Workshop,” Journal of Aircraft , Vol. 51, No. 4, July

2014, pp. 1194–1213, doi:10.2514/1.c032389.

257

http://dx.doi.org/10.2514/6.2020-0043
http://dx.doi.org/10.2514/1.j053535
http://dx.doi.org/10.2514/1.j056128
http://dx.doi.org/10.2514/2.6877
http://dx.doi.org/10.2514/1.10771
http://dx.doi.org/10.2514/1.30572
http://dx.doi.org/10.2514/1.30572
http://dx.doi.org/10.2514/6.2010-4547
http://dx.doi.org/10.2514/6.2010-4547
http://dx.doi.org/10.2514/1.c032389

[63] Mavriplis, D. J., Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld,

B., Wahls, R. A., Morrison, J. H., Zickuhr, T., Levy, D., and Murayama, M., “Grid

Quality and Resolution Issues from the Drag Prediction Workshop Series,” Journal

of Aircraft , Vol. 46, No. 3, May 2009, pp. 935–950, doi:10.2514/1.39201.

[64] Tinoco, E. N., Brodersen, O. P., Keye, S., Laflin, K. R., Feltrop, E., Vassberg,

J. C., Mani, M., Rider, B., Wahls, R. A., Morrison, J. H., Hue, D., Roy, C. J.,

Mavriplis, D. J., and Murayama, M., “Summary Data from the Sixth AIAA CFD

Drag Prediction Workshop: CRM Cases,” Journal of Aircraft , Vol. 55, No. 4, July

2018, pp. 1352–1379, doi:10.2514/1.c034409.

[65] Derlaga, J. M. and Morrison, J. H., “Statistical Analysis of the Sixth AIAA Drag

Prediction Workshop Solutions,” Journal of Aircraft , Vol. 55, No. 4, July 2018,

pp. 1388–1400, doi:10.2514/1.c034938.

[66] Hicken, J. E. and Alonso, J. J., “PDE-constrained optimization with error estima-

tion and control,” Journal of Computational Physics , Vol. 263, April 2014, pp. 136–

150, doi:10.1016/j.jcp.2013.12.050.

[67] Chen, G. and Fidkowski, K. J., “Discretization error control for constrained aero-

dynamic shape optimization,” Journal of Computational Physics , Vol. 387, No. 1,

June 2019, pp. 163–185, doi:10.1016/j.jcp.2019.02.038.

[68] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck,

H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.-

O., van Leer, B., and Visbal, M., “High-order CFD methods: current status and

perspective,” International Journal for Numerical Methods in Fluids , Vol. 72, No. 8,

Jan. 2013, pp. 811–845, doi:10.1002/fld.3767.

[69] Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and

Mavriplis, D., “CFD Vision 2030 Study: A Path to Revolutionary Computational

Aerosciences,” Tech. Rep. NASA/CR-2014-218178, NASA, March 2014, Available

at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.

pdf.

[70] Liu, Y., Vinokur, M., and Wang, Z., “Spectral difference method for unstructured

grids I: Basic formulation,” Journal of Computational Physics , Vol. 216, No. 2, Aug.

2006, pp. 780–801, doi:10.1016/j.jcp.2006.01.024.

258

http://dx.doi.org/10.2514/1.39201
http://dx.doi.org/10.2514/1.c034409
http://dx.doi.org/10.2514/1.c034938
http://dx.doi.org/10.1016/j.jcp.2013.12.050
http://dx.doi.org/10.1016/j.jcp.2019.02.038
http://dx.doi.org/10.1002/fld.3767
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.pdf
http://dx.doi.org/10.1016/j.jcp.2006.01.024

[71] Wang, Z. J., Liu, Y., May, G., and Jameson, A., “Spectral Difference Method

for Unstructured Grids II: Extension to the Euler Equations,” Journal of Scientific

Computing , Vol. 32, No. 1, Dec. 2006, pp. 45–71, doi:10.1007/s10915-006-9113-9.

[72] Liang, C., Jameson, A., and Wang, Z., “Spectral difference method for compressible

flow on unstructured grids with mixed elements,” Journal of Computational Physics ,

Vol. 228, No. 8, May 2009, pp. 2847–2858, doi:10.1016/j.jcp.2008.12.038.

[73] Wang, Z., “Spectral (Finite) Volume Method for Conservation Laws on Unstruc-

tured Grids. Basic Formulation,” Journal of Computational Physics , Vol. 178, No. 1,

May 2002, pp. 210–251, doi:10.1006/jcph.2002.7041.

[74] Wang, Z., Zhang, L., and Liu, Y., “Spectral (finite) volume method for conservation

laws on unstructured grids IV: extension to two-dimensional systems,” Journal of

Computational Physics , Vol. 194, No. 2, March 2004, pp. 716–741, doi:10.1016/j.

jcp.2003.09.012.

[75] Huynh, H. T., “A Flux Reconstruction Approach to High-Order Schemes Includ-

ing Discontinuous Galerkin Methods,” 18th AIAA Computational Fluid Dynam-

ics Conference, American Institute of Aeronautics and Astronautics, June 2007,

doi:10.2514/6.2007-4079.

[76] Vincent, P. E., Castonguay, P., and Jameson, A., “A New Class of High-Order

Energy Stable Flux Reconstruction Schemes,” Journal of Scientific Computing ,

Vol. 47, No. 1, Sept. 2010, pp. 50–72, doi:10.1007/s10915-010-9420-z.

[77] Huynh, H., Wang, Z., and Vincent, P., “High-order methods for computational

fluid dynamics: A brief review of compact differential formulations on unstructured

grids,” Computers & Fluids , Vol. 98, July 2014, pp. 209–220, doi:10.1016/j.comp

fluid.2013.12.007.

[78] Vermeire, B. C., Nadarajah, S., and Tucker, P. G., “Implicit large eddy simulation

using the high-order correction procedure via reconstruction scheme,” International

Journal for Numerical Methods in Fluids , Vol. 82, No. 5, Jan. 2016, pp. 231–260,

doi:10.1002/fld.4214.

[79] Hughes, T. J. R., “A simple scheme for developing ‘upwind’ finite elements,” In-

ternational Journal for Numerical Methods in Engineering , Vol. 12, No. 9, 1978,

pp. 1359–1365, doi:10.1002/nme.1620120904.

259

http://dx.doi.org/10.1007/s10915-006-9113-9
http://dx.doi.org/10.1016/j.jcp.2008.12.038
http://dx.doi.org/10.1006/jcph.2002.7041
http://dx.doi.org/10.1016/j.jcp.2003.09.012
http://dx.doi.org/10.1016/j.jcp.2003.09.012
http://dx.doi.org/10.2514/6.2007-4079
http://dx.doi.org/10.1007/s10915-010-9420-z
http://dx.doi.org/10.1016/j.compfluid.2013.12.007
http://dx.doi.org/10.1016/j.compfluid.2013.12.007
http://dx.doi.org/10.1002/fld.4214
http://dx.doi.org/10.1002/nme.1620120904

[80] Brooks, A. N. and Hughes, T. J., “Streamline upwind/Petrov-Galerkin formula-

tions for convection dominated flows with particular emphasis on the incompressible

Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineer-

ing , Vol. 32, No. 1-3, Sept. 1982, pp. 199–259, doi:10.1016/0045-7825(82)90071

-8.

[81] Reed, W. and Hill, T., “Triangular mesh methods for the neutron transport

equation,” Tech. rep., Los Alamos Scientific Lab, October 1973, Available:

https://www.osti.gov/servlets/purl/4491151.

[82] Bassi, F. and Rebay, S., “A High-Order Accurate Discontinuous Finite Element

Method for the Numerical Solution of the Compressible Navier–Stokes Equations,”

Journal of Computational Physics , Vol. 131, No. 2, March 1997, pp. 267–279, doi:10

.1006/jcph.1996.5572.

[83] Bassi, F. and Rebay, S., “GMRES Discontinuous Galerkin Solution of the Com-

pressible Navier-Stokes Equations,” Lecture Notes in Computational Science and

Engineering , Springer Berlin Heidelberg, 2000, pp. 197–208, doi:10.1007/978-3-

642-59721-3 14.

[84] Cockburn, B. and Shu, C.-W., “Runge–Kutta discontinuous Galerkin methods for

convection-dominated problems,” Journal of Scientific Computing , Vol. 16, No. 3,

September 2001, pp. 173–261, doi:10.1023/a:1012873910884.

[85] Hartmann, R. and Houston, P., “Adaptive Discontinuous Galerkin Finite Element

Methods for the Compressible Euler Equations,” Journal of Computational Physics ,

Vol. 183, No. 2, December 2002, pp. 508–532, doi:10.1006/jcph.2002.7206.

[86] Demkowicz, L., Devloo, P., and Oden, J., “On an h-type mesh-refinement strategy

based on minimization of interpolation errors,” Computer Methods in Applied Me-

chanics and Engineering , Vol. 53, No. 1, Oct. 1985, pp. 67–89, doi:10.1016/0045

-7825(85)90076-3.

[87] Zienkiewicz, O. C. and Zhu, J. Z., “A simple error estimator and adaptive procedure

for practical engineering analysis,” International Journal for Numerical Methods in

Engineering , Vol. 24, No. 2, Feb. 1987, pp. 337–357, doi:10.1002/nme.1620240206.

[88] Eriksson, K. and Johnson, C., “Adaptive Finite Element Methods for Parabolic

Problems I: A Linear Model Problem,” SIAM Journal on Numerical Analysis ,

Vol. 28, No. 1, Feb. 1991, pp. 43–77, doi:10.1137/0728003.

260

http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/0045-7825(82)90071-8
https://www.osti.gov/servlets/purl/4491151
http://dx.doi.org/10.1006/jcph.1996.5572
http://dx.doi.org/10.1006/jcph.1996.5572
http://dx.doi.org/10.1007/978-3-642-59721-3_14
http://dx.doi.org/10.1007/978-3-642-59721-3_14
http://dx.doi.org/10.1023/a:1012873910884
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1016/0045-7825(85)90076-3
http://dx.doi.org/10.1016/0045-7825(85)90076-3
http://dx.doi.org/10.1002/nme.1620240206
http://dx.doi.org/10.1137/0728003

[89] Demkowicz, L., Oden, J., and Strouboulis, T., “Adaptive finite elements for flow

problems with moving boundaries. part I: Variational principles and a posteriori es-

timates,” Computer Methods in Applied Mechanics and Engineering , Vol. 46, No. 2,

Oct. 1984, pp. 217–251, doi:10.1016/0045-7825(84)90063-x.

[90] Ainsworth, M. and Oden, J., “A posteriori error estimation in finite element analy-

sis,” Computer Methods in Applied Mechanics and Engineering , Vol. 142, No. 1-2,

March 1997, pp. 1–88, doi:10.1016/s0045-7825(96)01107-3.

[91] Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Element

Analysis , John Wiley & Sons, Inc., Aug. 2000, doi:10.1002/9781118032824.

[92] Babuška, I., Strouboulis, T., and Upadhyay, C., “A model study of the quality

of a posteriori error estimators for linear elliptic problems. Error estimation in

the interior of patchwise uniform grids of triangles,” Computer Methods in Ap-

plied Mechanics and Engineering , Vol. 114, No. 3-4, April 1994, pp. 307–378,

doi:10.1016/0045-7825(94)90177-5.

[93] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., and Copps, K.,

“Validation ofa posteriori error estimators by numerical approach,” International

Journal for Numerical Methods in Engineering , Vol. 37, No. 7, April 1994, pp. 1073–

1123, doi:10.1002/nme.1620370702.

[94] Becker, R. and Rannacher, R., “An optimal control approach to a posteriori error

estimation in finite element methods,” Acta Numerica, Vol. 10, May 2001, pp. 1–

102, doi:10.1017/s0962492901000010.

[95] Pierce, N. A. and Giles, M. B., “Adjoint Recovery of Superconvergent Functionals

from PDE Approximations,” SIAM Review , Vol. 42, No. 2, Jan. 2000, pp. 247–264,

doi:10.1137/s0036144598349423.

[96] Giles, M. B. and Süli, E., “Adjoint methods for PDEs: a posteriori error analysis

and postprocessing by duality,” Acta Numerica, Vol. 11, Jan. 2002, pp. 145–236,

doi:10.1017/s096249290200003x.

[97] Venditti, D. A. and Darmofal, D. L., “Grid Adaptation for Functional Outputs: Ap-

plication to Two-Dimensional Inviscid Flows,” Journal of Computational Physics ,

Vol. 176, No. 1, Feb. 2002, pp. 40–69, doi:10.1006/jcph.2001.6967.

[98] Fidkowski, K. J. and Darmofal, D. L., “A triangular cut-cell adaptive method for

high-order discretizations of the compressible Navier–Stokes equations,” Journal of

261

http://dx.doi.org/10.1016/0045-7825(84)90063-x
http://dx.doi.org/10.1016/s0045-7825(96)01107-3
http://dx.doi.org/10.1002/9781118032824
http://dx.doi.org/10.1016/0045-7825(94)90177-5
http://dx.doi.org/10.1002/nme.1620370702
http://dx.doi.org/10.1017/s0962492901000010
http://dx.doi.org/10.1137/s0036144598349423
http://dx.doi.org/10.1017/s096249290200003x
http://dx.doi.org/10.1006/jcph.2001.6967

Computational Physics , Vol. 225, No. 2, August 2007, pp. 1653–1672, doi:10.101

6/j.jcp.2007.02.007.

[99] Nemec, M. and Aftosmis, M., “Adjoint Error Estimation and Adaptive Refinement

for Embedded-Boundary Cartesian Meshes,” 18th AIAA Computational Fluid Dy-

namics Conference, AIAA Paper 2007-4187, June 2007, doi:10.2514/6.2007-4187.

[100] Wang, L. and Mavriplis, D. J., “Adjoint-based h–p adaptive discontinuous Galerkin

methods for the 2D compressible Euler equations,” Journal of Computational

Physics , Vol. 228, No. 20, Nov. 2009, pp. 7643–7661, doi:10.1016/j.jcp.2009

.07.012.

[101] Fidkowski, K. J. and Darmofal, D. L., “Review of Output-Based Error Estimation

and Mesh Adaptation in Computational Fluid Dynamics,” AIAA Journal , Vol. 49,

No. 4, April 2011, pp. 673–694, doi:10.2514/1.j050073.

[102] Drohmann, M. and Carlberg, K., “The ROMES Method for Statistical Modeling of

Reduced-Order-Model Error,” SIAM/ASA Journal on Uncertainty Quantification,

Vol. 3, No. 1, Jan. 2015, pp. 116–145, doi:10.1137/140969841.

[103] Moosavi, A., Ştefănescu, R., and Sandu, A., “Multivariate predictions of local

reduced-order-model errors and dimensions,” International Journal for Numerical

Methods in Engineering , Vol. 113, No. 3, Oct. 2017, pp. 512–533, doi:10.1002/nm

e.5624.

[104] Freno, B. A. and Carlberg, K. T., “Machine-learning error models for approximate

solutions to parameterized systems of nonlinear equations,” Computer Methods in

Applied Mechanics and Engineering , Vol. 348, May 2019, pp. 250–296, doi:10.101

6/j.cma.2019.01.024.

[105] Rauser, F., Korn, P., and Marotzke, J., “Predicting goal error evolution from

near-initial-information: A learning algorithm,” Journal of Computational Physics ,

Vol. 230, No. 19, Aug. 2011, pp. 7284–7299, doi:10.1016/j.jcp.2011.05.029.

[106] Hanna, B. N., Dinh, N. T., Youngblood, R. W., and Bolotnov, I. A., “Machine-

learning based error prediction approach for coarse-grid Computational Fluid Dy-

namics (CG-CFD),” Progress in Nuclear Energy , Vol. 118, Jan. 2020, pp. 103140,

doi:10.1016/j.pnucene.2019.103140.

262

http://dx.doi.org/10.1016/j.jcp.2007.02.007
http://dx.doi.org/10.1016/j.jcp.2007.02.007
http://dx.doi.org/10.2514/6.2007-4187
http://dx.doi.org/10.1016/j.jcp.2009.07.012
http://dx.doi.org/10.1016/j.jcp.2009.07.012
http://dx.doi.org/10.2514/1.j050073
http://dx.doi.org/10.1137/140969841
http://dx.doi.org/10.1002/nme.5624
http://dx.doi.org/10.1002/nme.5624
http://dx.doi.org/10.1016/j.cma.2019.01.024
http://dx.doi.org/10.1016/j.cma.2019.01.024
http://dx.doi.org/10.1016/j.jcp.2011.05.029
http://dx.doi.org/10.1016/j.pnucene.2019.103140

[107] Bao, H., Dinh, N. T., Lane, J. W., and Youngblood, R. W., “A data-driven frame-

work for error estimation and mesh-model optimization in system-level thermal-

hydraulic simulation,” Nuclear Engineering and Design, Vol. 349, Aug. 2019, pp. 27–

45, doi:10.1016/j.nucengdes.2019.04.023.

[108] Manevitz, L., Bitar, A., and Givoli, D., “Neural network time series forecasting of

finite-element mesh adaptation,” Neurocomputing , Vol. 63, Jan. 2005, pp. 447–463,

doi:10.1016/j.neucom.2004.06.009.

[109] Balasubramanian, R. and Newman, J. C., “Comparison of adjoint-based and

feature-based grid adaptation for functional outputs,” International Journal for

Numerical Methods in Fluids , Vol. 53, No. 10, Oct. 2007, pp. 1541–1569, doi:10.1

002/fld.1361.

[110] Kikuchi, N., Chung, K. Y., Torigaki, T., and Taylor, J. E., “Adaptive Finite Element

Methods for Shape Optimization of Linearly Elastic Structures,” The Optimum

Shape, Springer US, 1986, pp. 139–169, doi:10.1007/978-1-4615-9483-3 6.

[111] Banichuk, N. V., Barthold, F. J., Falk, A., and Stein, E., “Mesh refinement for

shape optimization,” Structural Optimization, Vol. 9, No. 1, Feb. 1995, pp. 46–51,

doi:10.1007/bf01742644.

[112] Schleupen, A., Maute, K., and Ramm, E., “Adaptive FE-procedures in shape opti-

mization,” Structural and Multidisciplinary Optimization, Vol. 19, No. 4, July 2000,

pp. 282–302, doi:10.1007/s001580050125.

[113] Lu, J., An a posteriori error control framework for adaptive precision opti-

mization using discontinuous Galerkin finite element method , Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2005, Avail-

able: http://hdl.handle.net/1721.1/34134.

[114] Nemec, M. and Aftosmis, M., “Output Error Estimates and Mesh Refinement in

Aerodynamic Shape Optimization,” 51st AIAA Aerospace Sciences Meeting includ-

ing the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-865,

January 2013, doi:10.2514/6.2013-865.

[115] Nemec, M., Aftosmis, M., and Wintzer, M., “Adjoint-based adaptive mesh re-

finement for complex geometries,” 46th AIAA Aerospace Sciences Meeting and

Exhibit , American Institute of Aeronautics and Astronautics, Jan 2008, p. 725,

doi:10.2514/6.2014-2576.

263

http://dx.doi.org/10.1016/j.nucengdes.2019.04.023
http://dx.doi.org/10.1016/j.neucom.2004.06.009
http://dx.doi.org/10.1002/fld.1361
http://dx.doi.org/10.1002/fld.1361
http://dx.doi.org/10.1007/978-1-4615-9483-3_6
http://dx.doi.org/10.1007/bf01742644
http://dx.doi.org/10.1007/s001580050125
http://hdl.handle.net/1721.1/34134
http://dx.doi.org/10.2514/6.2013-865
http://dx.doi.org/10.2514/6.2014-2576

[116] Li, D. and Hartmann, R., “Adjoint-based airfoil optimization with discretization

error control,” International Journal for Numerical Methods in Fluids , Vol. 77,

No. 1, January 2015, pp. 1–17, doi:10.1002/fld.3971.

[117] SPALART, P. and ALLMARAS, S., “A one-equation turbulence model for aerody-

namic flows,” 30th Aerospace Sciences Meeting and Exhibit , AIAA Paper 1992-0439,

Jan. 1992, doi:10.2514/6.1992-439.

[118] Allmaras, S., Johnson, F., and Spalart, P., “Modifications and Clarifications for the

Implementation of the Spalart-Allmaras Turbulence Model,” Seventh International

Conference on Computational Fluid Dynamics (ICCFD7) 1902, 2012.

[119] Ceze, M. and Fidkowski, K. J., “Drag Prediction Using Adaptive Discontinuous

Finite Elements,” Journal of Aircraft , Vol. 51, No. 4, July 2014, pp. 1284–1294,

doi:10.2514/1.c032622.

[120] Bassi, F. and Rebay, S., “High-Order Accurate Discontinuous Finite Element Solu-

tion of the 2D Euler Equations,” Journal of Computational Physics , Vol. 138, No. 2,

Dec. 1997, pp. 251–285, doi:10.1006/jcph.1997.5454.

[121] Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., “p-Multigrid solution of

high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes

equations,” Journal of Computational Physics , Vol. 207, No. 1, July 2005, pp. 92–

113, doi:10.1016/j.jcp.2005.01.005.

[122] Roe, P., “Approximate Riemann solvers, parameter vectors, and difference

schemes,” Journal of Computational Physics , Vol. 43, No. 2, October 1981, pp. 357–

372, doi:10.1016/0021-9991(81)90128-5.

[123] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., “Unified Analysis of

Discontinuous Galerkin Methods for Elliptic Problems,” SIAM Journal on Numer-

ical Analysis , Vol. 39, No. 5, Jan. 2002, pp. 1749–1779, doi:10.1137/s003614290

1384162.

[124] Oliver, T. A., A High-Order, Adaptive, Discontinuous Galerkin Finite Element

Method for the Reynolds-Averaged Navier-Stokes Equations , Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2008, Avail-

able: http://hdl.handle.net/1721.1/46818.

264

http://dx.doi.org/10.1002/fld.3971
http://dx.doi.org/10.2514/6.1992-439
http://dx.doi.org/10.2514/1.c032622
http://dx.doi.org/10.1006/jcph.1997.5454
http://dx.doi.org/10.1016/j.jcp.2005.01.005
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1137/s0036142901384162
http://dx.doi.org/10.1137/s0036142901384162
http://hdl.handle.net/1721.1/46818

[125] Oliver, T. A. and Darmofal, D. L., “Analysis of Dual Consistency for Discontinuous

Galerkin Discretizations of Source Terms,” SIAM Journal on Numerical Analysis ,

Vol. 47, No. 5, Jan. 2009, pp. 3507–3525, doi:10.1137/080721467.

[126] Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algo-

rithm for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and

Statistical Computing , Vol. 7, No. 3, July 1986, pp. 856–869, doi:10.1137/0907058.

[127] Ceze, M. and Fidkowski, K. J., “Constrained pseudo-transient continuation,” In-

ternational Journal for Numerical Methods in Engineering , Vol. 102, No. 11, March

2015, pp. 1683–1703, doi:10.1002/nme.4858.

[128] Persson, P.-O. and Peraire, J., “Sub-Cell Shock Capturing for Discontinuous

Galerkin Methods,” 44th AIAA Aerospace Sciences Meeting and Exhibit , AIAA

Paper 2006-0112, Jan. 2006, doi:10.2514/6.2006-112.

[129] Nadarajah, S. and Jameson, A., “A comparison of the continuous and discrete

adjoint approach to automatic aerodynamic optimization,” 38th Aerospace Sciences

Meeting and Exhibit , AIAA Paper 2000-667, January 2000, doi:10.2514/6.2000-6

67.

[130] Nadarajah, S., The Discrete Adjoint Approach to Aerodynamic Shape Optimization,

Ph.D. thesis, Stanford University, Stanford, California, USA, 2003, Available at

http://aero-comlab.stanford.edu/Papers/nadarajah.thesis.pdf.

[131] Süli, E. and Houston, P., “Adaptive Finite Element Approximation of Hyperbolic

Problems,” Error Estimation and Adaptive Discretization Methods in Computa-

tional Fluid Dynamics , Springer Berlin Heidelberg, 2003, pp. 269–344, doi:10.100

7/978-3-662-05189-4 6.

[132] Hartmann, R., “Adjoint Consistency Analysis of Discontinuous Galerkin Discretiza-

tions,” SIAM Journal on Numerical Analysis , Vol. 45, No. 6, Jan. 2007, pp. 2671–

2696, doi:10.1137/060665117.

[133] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press,

2004, doi:10.1017/cbo9780511804441.

[134] Biros, G. and Ghattas, O., “Parallel Lagrange–Newton–Krylov–Schur Methods for

PDE-Constrained Optimization. Part I: The Krylov–Schur Solver,” SIAM Journal

on Scientific Computing , Vol. 27, No. 2, Jan. 2005, pp. 687–713, doi:10.1137/s106

482750241565x.

265

http://dx.doi.org/10.1137/080721467
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1002/nme.4858
http://dx.doi.org/10.2514/6.2006-112
http://dx.doi.org/10.2514/6.2000-667
http://dx.doi.org/10.2514/6.2000-667
http://aero-comlab.stanford.edu/Papers/nadarajah.thesis.pdf
http://dx.doi.org/10.1007/978-3-662-05189-4_6
http://dx.doi.org/10.1007/978-3-662-05189-4_6
http://dx.doi.org/10.1137/060665117
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1137/s106482750241565x
http://dx.doi.org/10.1137/s106482750241565x

[135] Ilić, Č., “Comparison of Optimizer-Based and Flow Solver-Based Trimming in the

Context of High-Fidelity Aerodynamic Optimization,” Notes on Numerical Fluid

Mechanics and Multidisciplinary Design, Springer International Publishing, Oct.

2017, pp. 455–465, doi:10.1007/978-3-319-64519-3 41.

[136] Rothacker, B. A., Ceze, M., and Fidkowski, K., “Adjoint-Based Error Estimation

and Mesh Adaptation for Problems with Output Constraints,” 32nd AIAA Applied

Aerodynamics Conference, AIAA Paper 2014-2576, June 2014, doi:10.2514/6.20

14-2576.

[137] Martins, J. R. R. A., A coupled-adjoint method for high-fidelity aero-structural opti-

mization, Ph.D. thesis, Stnford University, Stanford, California, USA, 2002, Avail-

able at http://aero-comlab.stanford.edu/Papers/martins.thesis.pdf.

[138] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “A Coupled-Adjoint

Sensitivity Analysis Method for High-Fidelity Aero-Structural Design,” Optimiza-

tion and Engineering , Vol. 6, No. 1, March 2005, pp. 33–62, doi:10.1023/b:

opte.0000048536.47956.62.

[139] Barcelos, M., Bavestrello, H., and Maute, K., “A Schur–Newton–Krylov solver for

steady-state aeroelastic analysis and design sensitivity analysis,” Computer Methods

in Applied Mechanics and Engineering , Vol. 195, No. 17-18, March 2006, pp. 2050–

2069, doi:10.1016/j.cma.2004.09.013.

[140] Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Scalable Par-

allel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint

Derivative Computations,” AIAA Journal , Vol. 52, No. 5, May 2014, pp. 935–951,

doi:10.2514/1.j052255.

[141] Sanchez, R., Albring, T., Palacios, R., Gauger, N. R., Economon, T. D., and

Alonso, J. J., “Coupled adjoint-based sensitivities in large-displacement fluid-

structure interaction using algorithmic differentiation,” International Journal for

Numerical Methods in Engineering , Vol. 113, No. 7, Nov. 2017, pp. 1081–1107,

doi:10.1002/nme.5700.

[142] Hartmann, R., “Multitarget Error Estimation and Adaptivity in Aerodynamic Flow

Simulations,” SIAM Journal on Scientific Computing , Vol. 31, No. 1, Jan. 2008,

pp. 708–731, doi:10.1137/070710962.

266

http://dx.doi.org/10.1007/978-3-319-64519-3_41
http://dx.doi.org/10.2514/6.2014-2576
http://dx.doi.org/10.2514/6.2014-2576
http://aero-comlab.stanford.edu/Papers/martins.thesis.pdf
http://dx.doi.org/10.1023/b:opte.0000048536.47956.62
http://dx.doi.org/10.1023/b:opte.0000048536.47956.62
http://dx.doi.org/10.1016/j.cma.2004.09.013
http://dx.doi.org/10.2514/1.j052255
http://dx.doi.org/10.1002/nme.5700
http://dx.doi.org/10.1137/070710962

[143] Zegeling, P. A., “r-refinement for evolutionary PDEs with finite elements or finite

differences,” Applied Numerical Mathematics , Vol. 26, No. 1-2, Jan. 1998, pp. 97–

104, doi:10.1016/s0168-9274(97)00086-x.

[144] McRae, D., “r-Refinement grid adaptation algorithms and issues,” Computer Meth-

ods in Applied Mechanics and Engineering , Vol. 189, No. 4, Sept. 2000, pp. 1161–

1182, doi:10.1016/s0045-7825(99)00372-2.

[145] Ding, K. and Fidkowski, K., “Output Error Control Using r-Adaptation,” 23rd

AIAA Computational Fluid Dynamics Conference, American Institute of Aeronau-

tics and Astronautics, June 2017, doi:10.2514/6.2017-4111.

[146] Sanjaya, D. P. and Fidkowski, K. J., “Improving High-Order Finite Element Ap-

proximation Through Geometrical Warping,” AIAA Journal , Vol. 54, No. 12, Dec.

2016, pp. 3994–4010, doi:10.2514/1.j055071.

[147] Sanjaya, D. P., Towards Automated, Metric-Conforming, Mesh Optimization For

High-Order, Finite-Element Methods , Ph.D. thesis, University of Michigan, Ann

Arbor, Michigan, USA, 2019, Available: http://hdl.handle.net/2027.42/15161

9.

[148] Castro-Dı́az, M. J., Hecht, F., Mohammadi, B., and Pironneau, O., “Anisotropic

unstructured mesh adaption for flow simulations,” International Journal for Nu-

merical Methods in Fluids , Vol. 25, No. 4, August 1997, pp. 475–491, doi:10.1002/

(sici)1097-0363(19970830)25:4<475::aid-fld575>3.0.co;2-6.

[149] Habashi, W. G., Dompierre, J., Bourgault, Y., Ait-Ali-Yahia, D., Fortin, M., and

Vallet, M.-G., “Anisotropic mesh adaptation: towards user-independent, mesh-

independent and solver-independent CFD. Part I: general principles,” International

Journal for Numerical Methods in Fluids , Vol. 32, No. 6, March 2000, pp. 725–744,

doi:10.1002/(sici)1097-0363(20000330)32:6<725::aid-fld935>3.0.co;2-4.

[150] Frey, P. and Alauzet, F., “Anisotropic mesh adaptation for CFD computations,”

Computer Methods in Applied Mechanics and Engineering , Vol. 194, No. 48-49,

November 2005, pp. 5068–5082, doi:10.1016/j.cma.2004.11.025.

[151] Venditti, D. A. and Darmofal, D. L., “Anisotropic grid adaptation for functional

outputs: application to two-dimensional viscous flows,” Journal of Computational

Physics , Vol. 187, No. 1, May 2003, pp. 22–46, doi:10.1016/s0021-9991(03)000

74-3.

267

http://dx.doi.org/10.1016/s0168-9274(97)00086-x
http://dx.doi.org/10.1016/s0045-7825(99)00372-2
http://dx.doi.org/10.2514/6.2017-4111
http://dx.doi.org/10.2514/1.j055071
http://hdl.handle.net/2027.42/151619
http://hdl.handle.net/2027.42/151619
http://dx.doi.org/10.1002/(sici)1097-0363(19970830)25:4<475::aid-fld575>3.0.co;2-6
http://dx.doi.org/10.1002/(sici)1097-0363(19970830)25:4<475::aid-fld575>3.0.co;2-6
http://dx.doi.org/10.1002/(sici)1097-0363(20000330)32:6<725::aid-fld935>3.0.co;2-4
http://dx.doi.org/10.1016/j.cma.2004.11.025
http://dx.doi.org/10.1016/s0021-9991(03)00074-3
http://dx.doi.org/10.1016/s0021-9991(03)00074-3

[152] Loseille, A., Dervieux, A., and Alauzet, F., “Fully anisotropic goal-oriented mesh

adaptation for 3D steady Euler equations,” Journal of Computational Physics ,

Vol. 229, No. 8, April 2010, pp. 2866–2897, doi:10.1016/j.jcp.2009.12.021.

[153] Rangarajan, A., Balan, A., and May, G., “Mesh Optimization for Discontinuous

Galerkin Methods Using a Continuous Mesh Model,” AIAA Journal , Vol. 56, No. 10,

Oct. 2018, pp. 4060–4073, doi:10.2514/1.j056965.

[154] Balan, A., Park, M. A., and Anderson, W. K., “Adjoint-based Anisotropic Mesh

Adaptation for a Stabilized Finite-Element Flow Solver,” AIAA Aviation 2019 Fo-

rum, AIAA Paper 2019-2949, June 2019, doi:10.2514/6.2019-2949.

[155] Balan, A., Park, M. A., Wood, S., and Anderson, W. K., “Verification of Anisotropic

Mesh Adaptation for Complex Aerospace Applications,” AIAA Scitech 2020 Forum,

AIAA Paper 2020-0675, Jan. 2020, doi:10.2514/6.2020-0675.

[156] Yano, M., An optimization framework for adaptive higher-order discretizations of

partial differential equations on anisotropic simplex meshes , Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2012, Avail-

able: http://hdl.handle.net/1721.1/76090,.

[157] Yano, M. and Darmofal, D. L., “An optimization-based framework for anisotropic

simplex mesh adaptation,” Journal of Computational Physics , Vol. 231, No. 22,

September 2012, pp. 7626–7649, doi:10.1016/j.jcp.2012.06.040.

[158] Loseille, A. and Alauzet, F., “Continuous Mesh Model and Well-Posed Continuous

Interpolation Error Estimation,” Research Report RR-6846, INRIA, Domaine de

Voluceau, Rocquencourt, France, March 2009, Available at https://hal.inria.

fr/inria-00370235/PDF/rrcontmesh.pdf.

[159] Hecht, F., “BAMG: Bidimensional Anisotropic Mesh Generator,” INRIA–

Rocquencourt, France, 1998, Available: https://www.ljll.math.upmc.fr/he

cht/ftp/bamg/.

[160] Michal, T. and Krakos, J., “Anisotropic Mesh Adaptation Through Edge Primitive

Operations,” 50th AIAA Aerospace Sciences Meeting including the New Horizons

Forum and Aerospace Exposition, AIAA Paper 2012-159, Jan. 2012, doi:10.2514/

6.2012-159.

268

http://dx.doi.org/10.1016/j.jcp.2009.12.021
http://dx.doi.org/10.2514/1.j056965
http://dx.doi.org/10.2514/6.2019-2949
http://dx.doi.org/10.2514/6.2020-0675
http://hdl.handle.net/1721.1/76090
http://dx.doi.org/10.1016/j.jcp.2012.06.040
https://hal.inria.fr/inria-00370235/PDF/rrcontmesh.pdf
https://hal.inria.fr/inria-00370235/PDF/rrcontmesh.pdf
https://www.ljll.math.upmc.fr/hecht/ftp/bamg/
https://www.ljll.math.upmc.fr/hecht/ftp/bamg/
http://dx.doi.org/10.2514/6.2012-159
http://dx.doi.org/10.2514/6.2012-159

[161] Park, M. and Darmofal, D., “Parallel Anisotropic Tetrahedral Adaptation,” 46th

AIAA Aerospace Sciences Meeting and Exhibit , AIAA Paper 2008-0917, Jan. 2008,

doi:10.2514/6.2008-917.

[162] Ibanez, D., Barral, N., Krakos, J., Loseille, A., Michal, T., and Park, M., “First

benchmark of the Unstructured Grid Adaptation Working Group,” Procedia Engi-

neering , Vol. 203, 2017, pp. 154–166, doi:10.1016/j.proeng.2017.09.800.

[163] Loseille, A. and Alauzet, F., “Continuous Mesh Framework Part I: Well-Posed Con-

tinuous Interpolation Error,” SIAM Journal on Numerical Analysis , Vol. 49, No. 1,

January 2011, pp. 38–60, doi:10.1137/090754078.

[164] Loseille, A. and Alauzet, F., “Continuous Mesh Framework Part II: Validations and

Applications,” SIAM Journal on Numerical Analysis , Vol. 49, No. 1, January 2011,

pp. 61–86, doi:10.1137/10078654x.

[165] Fidkowski, K. J., A Simplex Cut-Cell Adaptive Method for High–order Discretiza-

tions of the Compressible Navier-Stokes Equations , Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge, Massachusetts, USA, 2007, Available at http:

//hdl.handle.net/1721.1/39701.

[166] Carson, H. A., Huang, A. C., Galbraith, M. C., Allmaras, S. R., and Darmofal,

D. L., “Mesh Optimization via Error Sampling and Synthesis: An Update,” AIAA

Scitech 2020 Forum, AIAA Paper 2020-0087, Jan. 2020, doi:10.2514/6.2020-0087.

[167] Carson, H. A., Huang, A. C., Galbraith, M. C., Allmaras, S. R., and Darmofal, D. L.,

“Anisotropic mesh adaptation for continuous finite element discretization through

mesh optimization via error sampling and synthesis,” Journal of Computational

Physics , Vol. 420, Nov. 2020, pp. 109620, doi:10.1016/j.jcp.2020.109620.

[168] Dahm, J. P., Toward Accurate, Efficient, and Robust Hybridized Discontinuous

Galerkin Methods , Ph.D. thesis, University of Michigan, Ann Arbor, Michigan,

USA, 2017, Available at http://hdl.handle.net/2027.42/137150.

[169] Fidkowski, K. J. and Chen, G., “Output-based mesh optimization for hybridized and

embedded discontinuous Galerkin methods,” International Journal for Numerical

Methods in Engineering , Vol. 121, No. 5, March 2020, pp. 867–887, doi:10.1002/

nme.6248.

269

http://dx.doi.org/10.2514/6.2008-917
http://dx.doi.org/10.1016/j.proeng.2017.09.800
http://dx.doi.org/10.1137/090754078
http://dx.doi.org/10.1137/10078654x
http://hdl.handle.net/1721.1/39701
http://hdl.handle.net/1721.1/39701
http://dx.doi.org/10.2514/6.2020-0087
http://dx.doi.org/10.1016/j.jcp.2020.109620
http://hdl.handle.net/2027.42/137150
http://dx.doi.org/10.1002/nme.6248
http://dx.doi.org/10.1002/nme.6248

[170] Pennec, X., Fillard, P., and Ayache, N., “A Riemannian Framework for Tensor

Computing,” International Journal of Computer Vision, Vol. 66, No. 1, January

2006, pp. 41–66, doi:10.1007/s11263-005-3222-z.

[171] Fidkowski, K., “A Local Sampling Approach to Anisotropic Metric-Based Mesh

Optimization,” 54th AIAA Aerospace Sciences Meeting , AIAA Paper 2016-0835,

January 2016, doi:10.2514/6.2016-0835.

[172] Wu, H.-Y., Yang, S., Liu, F., and Tsai, H.-M., “Comparisons of Three Geo-

metric Representations of Airfoils for Aerodynamic Optimization,” 16th AIAA

Computational Fluid Dynamics Conference, AIAA Paper 2003-4095, June 2003,

doi:10.2514/6.2003-4095.

[173] Persson, P.-O., Bonet, J., and Peraire, J., “Discontinuous Galerkin solution of the

Navier–Stokes equations on deformable domains,” Computer Methods in Applied

Mechanics and Engineering , Vol. 198, No. 17-20, April 2009, pp. 1585–1595, doi:10

.1016/j.cma.2009.01.012.

[174] Kast, S. M. and Fidkowski, K. J., “Output-based Mesh Adaptation for High Or-

der Navier-Stokes Simulations on Deformable Domains,” Journal of Computational

Physics , Vol. 252, No. 1, 2013, pp. 468–494, doi:10.1016/j.jcp.2013.06.007.

[175] Luke, E., Collins, E., and Blades, E., “A fast mesh deformation method using

explicit interpolation,” Journal of Computational Physics , Vol. 231, No. 2, January

2012, pp. 586–601, doi:10.1016/j.jcp.2011.09.021.

[176] Jakobsson, S. and Amoignon, O., “Mesh deformation using radial basis functions

for gradient-based aerodynamic shape optimization,” Computers & Fluids , Vol. 36,

No. 6, July 2007, pp. 1119–1136, doi:10.1016/j.compfluid.2006.11.002.

[177] de Boer, A., van der Schoot, M., and Bijl, H., “Mesh deformation based on radial

basis function interpolation,” Computers & Structures , Vol. 85, No. 11-14, June

2007, pp. 784–795, doi:10.1016/j.compstruc.2007.01.013.

[178] Kraft, D., “A software package for sequential quadratic programming,” Tech. Rep.

DFVLR-FB 88-28, DLR German Aerospace Center–Institute for Flight Mechanics,

Köln, Germany, 1988.

[179] Kraft, D., “Algorithm 733: TOMP—Fortran modules for optimal control calcula-

tions,” ACM Transactions on Mathematical Software, Vol. 20, No. 3, September

1994, pp. 262–281, doi:10.1145/192115.192124.

270

http://dx.doi.org/10.1007/s11263-005-3222-z
http://dx.doi.org/10.2514/6.2016-0835
http://dx.doi.org/10.2514/6.2003-4095
http://dx.doi.org/10.1016/j.cma.2009.01.012
http://dx.doi.org/10.1016/j.cma.2009.01.012
http://dx.doi.org/10.1016/j.jcp.2013.06.007
http://dx.doi.org/10.1016/j.jcp.2011.09.021
http://dx.doi.org/10.1016/j.compfluid.2006.11.002
http://dx.doi.org/10.1016/j.compstruc.2007.01.013
http://dx.doi.org/10.1145/192115.192124

[180] Lawson, C. L. and Hanson, R. J., Solving Least Squares Problems , Society for In-

dustrial and Applied Mathematics, Jan. 1995, doi:10.1137/1.9781611971217.

[181] Brent, R. P., Algorithms for minimization without derivatives , Dover Publications,

Inc., Mineola, New York, 2013.

[182] Morawetz, C. S., “On the non-existence of continuous transonic flows past profiles

I,” Communications on Pure and Applied Mathematics , Vol. 9, No. 1, Feb. 1956,

pp. 45–68, doi:10.1002/cpa.3160090104.

[183] Cook, P. H., McDonald, M. A., and Firmin, M. C. P., “Aerofoil RAE 2822 pressure

distributions and boundary layer and wake measurements,” Experimental Data Base

for Computer Program Assessment AR-138, AGARD, 1979.

[184] Bisson, F., Nadarajah, S., and Shi-Dong, D., “Adjoint-Based Aerodynamic Op-

timization Framework,” 52nd Aerospace Sciences Meeting , American Institute of

Aeronautics and Astronautics, Jan. 2014, doi:10.2514/6.2014-0412.

[185] Carrier, G., Destarac, D., Dumont, A., Meheut, M., Din, I. S. E., Peter, J., Khelil,

S. B., Brezillon, J., and Pestana, M., “Gradient-Based Aerodynamic Optimization

with the elsA Software,” 52nd Aerospace Sciences Meeting , American Institute of

Aeronautics and Astronautics, Jan. 2014, doi:10.2514/6.2014-0568.

[186] Lee, C., Koo, D., Telidetzki, K., Buckley, H., Gagnon, H., and Zingg, D. W., “Aero-

dynamic Shape Optimization of Benchmark Problems Using Jetstream,” 53rd AIAA

Aerospace Sciences Meeting , American Institute of Aeronautics and Astronautics,

Jan. 2015, doi:10.2514/6.2015-0262.

[187] Poole, D. J., Allen, C. B., and Rendall, T., “Control Point-Based Aerodynamic

Shape Optimization Applied to AIAA ADODG Test Cases,” 53rd AIAA Aerospace

Sciences Meeting , American Institute of Aeronautics and Astronautics, Jan. 2015,

doi:10.2514/6.2015-1947.

[188] Yang, G. and Ronch, A. D., “Aerodynamic Shape Optimisation of Benchmark Prob-

lems Using SU2,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, American Institute of Aeronautics and Astronautics,

Jan. 2018, doi:10.2514/6.2018-0412.

[189] He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J. R. R. A., “Robust

aerodynamic shape optimization—From a circle to an airfoil,” Aerospace Science

and Technology , Vol. 87, April 2019, pp. 48–61, doi:10.1016/j.ast.2019.01.051.

271

http://dx.doi.org/10.1137/1.9781611971217
http://dx.doi.org/10.1002/cpa.3160090104
http://dx.doi.org/10.2514/6.2014-0412
http://dx.doi.org/10.2514/6.2014-0568
http://dx.doi.org/10.2514/6.2015-0262
http://dx.doi.org/10.2514/6.2015-1947
http://dx.doi.org/10.2514/6.2018-0412
http://dx.doi.org/10.1016/j.ast.2019.01.051

[190] Nemec, M., Zingg, D. W., and Pulliam, T. H., “Multipoint and Multi-Objective

Aerodynamic Shape Optimization,” AIAA Journal , Vol. 42, No. 6, June 2004,

pp. 1057–1065, doi:10.2514/1.10415.

[191] Zingg, D. W. and Elias, S., “Aerodynamic Optimization Under a Range of Operating

Conditions,” AIAA Journal , Vol. 44, No. 11, November 2006, pp. 2787–2792, doi:10

.2514/1.23658.

[192] Kenway, G. K. W. and Martins, J. R. R. A., “Multipoint High-Fidelity Aerostruc-

tural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft ,

Vol. 51, No. 1, January 2014, pp. 144–160, doi:10.2514/1.c032150.

[193] Fidkowski, K. J., “Output-Based Space-Time Mesh Optimization for Unsteady

Flows Using Continuous-in-Time Adjoints,” Journal of Computational Physics ,

Vol. 341, July 2017, pp. 258–277, doi:10.1016/j.jcp.2017.04.005.

[194] Bishop, C. M. et al., Neural networks for pattern recognition, Oxford University

Press, Inc., New York, United States, Nov. 1995.

[195] Milano, M. and Koumoutsakos, P., “Neural Network Modeling for Near Wall Turbu-

lent Flow,” Journal of Computational Physics , Vol. 182, No. 1, Oct. 2002, pp. 1–26,

doi:10.1006/jcph.2002.7146.

[196] Huang, R., Hu, H., and Zhao, Y., “Nonlinear Reduced-Order Modeling for Multiple-

Input/Multiple-Output Aerodynamic Systems,” AIAA Journal , Vol. 52, No. 6, June

2014, pp. 1219–1231, doi:10.2514/1.j052323.

[197] Ling, J., Kurzawski, A., and Templeton, J., “Reynolds averaged turbulence mod-

elling using deep neural networks with embedded invariance,” Journal of Fluid Me-

chanics , Vol. 807, Oct. 2016, pp. 155–166, doi:10.1017/jfm.2016.615.

[198] Singh, A. P., Medida, S., and Duraisamy, K., “Machine-Learning-Augmented Pre-

dictive Modeling of Turbulent Separated Flows over Airfoils,” AIAA Journal ,

Vol. 55, No. 7, July 2017, pp. 2215–2227, doi:10.2514/1.j055595.

[199] Pan, S. and Duraisamy, K., “Long-Time Predictive Modeling of Nonlinear Dynam-

ical Systems Using Neural Networks,” Complexity , Vol. 2018, Dec. 2018, pp. 1–26,

doi:10.1155/2018/4801012.

272

http://dx.doi.org/10.2514/1.10415
http://dx.doi.org/10.2514/1.23658
http://dx.doi.org/10.2514/1.23658
http://dx.doi.org/10.2514/1.c032150
http://dx.doi.org/10.1016/j.jcp.2017.04.005
http://dx.doi.org/10.1006/jcph.2002.7146
http://dx.doi.org/10.2514/1.j052323
http://dx.doi.org/10.1017/jfm.2016.615
http://dx.doi.org/10.2514/1.j055595
http://dx.doi.org/10.1155/2018/4801012

[200] Raissi, M., Perdikaris, P., and Karniadakis, G., “Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving non-

linear partial differential equations,” Journal of Computational Physics , Vol. 378,

Feb. 2019, pp. 686–707, doi:10.1016/j.jcp.2018.10.045.

[201] Wang, J.-X., Wu, J.-L., and Xiao, H., “Physics-informed machine learning approach

for reconstructing Reynolds stress modeling discrepancies based on DNS data,”

Physical Review Fluids , Vol. 2, No. 3, March 2017, pp. 034603, doi:10.1103/phys

revfluids.2.034603.

[202] Fidkowski, K. J. and Chen, G., “Metric-based, goal-oriented mesh adaptation using

machine learning,” Journal of Computational Physics , 2020, Manuscript submitted

for publication.

[203] Rosenblatt, F., Priciples of neurodynamics; perceptrons and theory of brain mechan-

ics , Spartan Books, Washington, D.C., 1962.

[204] Nair, V. and Hinton, G. E., “Rectified linear units improve restricted boltzmann

machines,” Proceedings of the 27th international conference on machine learning

(ICML-10), 2010, pp. 807–814.

[205] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,

Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,

Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,

Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,

X., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015,

Software available from tensorflow.org.

[206] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980 , 2014.

[207] Shimizu, Y. S., Output-Based Error Estimation and Model Reduction for Chaotic

Flows , Ph.D. thesis, University of Michigan, Ann Arbor, Michigan, USA, 2019,

Available at http://hdl.handle.net/2027.42/149954.

[208] Knoll, D. and Keyes, D., “Jacobian-free Newton–Krylov methods: a survey of ap-

proaches and applications,” Journal of Computational Physics , Vol. 193, No. 2, Jan.

2004, pp. 357–397, doi:10.1016/j.jcp.2003.08.010.

273

http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1103/physrevfluids.2.034603
http://dx.doi.org/10.1103/physrevfluids.2.034603
tensorflow.org
http://hdl.handle.net/2027.42/149954
http://dx.doi.org/10.1016/j.jcp.2003.08.010

[209] Kenway, G. K., Mader, C. A., He, P., and Martins, J. R., “Effective adjoint

approaches for computational fluid dynamics,” Progress in Aerospace Sciences ,

Vol. 110, Oct. 2019, pp. 100542, doi:10.1016/j.paerosci.2019.05.002.

[210] Ranzato, M., Huang, F. J., Boureau, Y.-L., and LeCun, Y., “Unsupervised Learning

of Invariant Feature Hierarchies with Applications to Object Recognition,” 2007

IEEE Conference on Computer Vision and Pattern Recognition, IEEE, June 2007,

doi:10.1109/cvpr.2007.383157.

[211] Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J., “Stacked Convolutional

Auto-Encoders for Hierarchical Feature Extraction,” Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2011, pp. 52–59, doi:10.1007/978-3-642-21

735-7 7.

[212] Ronneberger, O., Fischer, P., and Brox, T., “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” Lecture Notes in Computer Science, Springer

International Publishing, 2015, pp. 234–241, doi:10.1007/978-3-319-24574-4 28.

[213] Long, J., Shelhamer, E., and Darrell, T., “Fully convolutional networks for semantic

segmentation,” Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 3431–3440.

[214] Noh, H., Hong, S., and Han, B., “Learning deconvolution network for semantic seg-

mentation,” Proceedings of the IEEE international conference on computer vision,

2015, pp. 1520–1528.

[215] Guo, X., Li, W., and Iorio, F., “Convolutional neural networks for steady flow

approximation,” Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining , ACM, 2016, pp. 481–490.

[216] Zhu, Y. and Zabaras, N., “Bayesian deep convolutional encoder–decoder networks

for surrogate modeling and uncertainty quantification,” Journal of Computational

Physics , Vol. 366, Aug. 2018, pp. 415–447, doi:10.1016/j.jcp.2018.04.018.

[217] Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and Kaushik, S., “Prediction

of aerodynamic flow fields using convolutional neural networks,” Computational

Mechanics , Vol. 64, No. 2, June 2019, pp. 525–545, doi:10.1007/s00466-019-017

40-0.

274

http://dx.doi.org/10.1016/j.paerosci.2019.05.002
http://dx.doi.org/10.1109/cvpr.2007.383157
http://dx.doi.org/10.1007/978-3-642-21735-7_7
http://dx.doi.org/10.1007/978-3-642-21735-7_7
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1016/j.jcp.2018.04.018
http://dx.doi.org/10.1007/s00466-019-01740-0
http://dx.doi.org/10.1007/s00466-019-01740-0

[218] Winovich, N., Ramani, K., and Lin, G., “ConvPDE-UQ: Convolutional neural net-

works with quantified uncertainty for heterogeneous elliptic partial differential equa-

tions on varied domains,” Journal of Computational Physics , Vol. 394, Oct. 2019,

pp. 263–279, doi:10.1016/j.jcp.2019.05.026.

[219] Ceze, M. and Fidkowski, K. J., “Anisotropic hp-Adaptation Framework for Func-

tional Prediction,” AIAA Journal , Vol. 51, No. 2, Feb. 2013, pp. 492–509,

doi:10.2514/1.j051845.

[220] Fidkowski, K. J., “Output-Based Error Estimation and Mesh Adaptation for Steady

and Unsteady Flow Problems,” 38th Advanced CFD Lectures Series; Von Karman

Institute for Fluid Dynamics (September 14–16 2015), edited by H. Deconinck and

T. Horvath, von Karman Institute for Fluid Dynamics, 2015.

[221] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

and Jackel, L. D., “Backpropagation Applied to Handwritten Zip Code Recogni-

tion,” Neural Computation, Vol. 1, No. 4, Dec. 1989, pp. 541–551, doi:10.1162/ne

co.1989.1.4.541.

[222] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “ImageNet Classification with

Deep Convolutional Neural Networks,” Advances in Neural Information Processing

Systems 25 , edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

Curran Associates, Inc., 2012, pp. 1097–1105, Available at http://papers.nips.

cc/paper/4824-imagenet-classification-with-deep-convolutional-neural

-networks.pdf.

[223] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556 , 2014.

[224] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recogni-

tion,” Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, 2016, pp. 770–778.

[225] LeCun, Y., Kavukcuoglu, K., and Farabet, C., “Convolutional networks and appli-

cations in vision,” Proceedings of 2010 IEEE International Symposium on Circuits

and Systems , IEEE, 2010, pp. 253–256.

[226] Dumoulin, V. and Visin, F., “A guide to convolution arithmetic for deep learning,”

arXiv preprint arXiv:1603.07285 , 2016.

275

http://dx.doi.org/10.1016/j.jcp.2019.05.026
http://dx.doi.org/10.2514/1.j051845
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[227] Odena, A., Dumoulin, V., and Olah, C., “Deconvolution and Checkerboard Arti-

facts,” Distill , 2016, doi:10.23915/distill.00003.

[228] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning representations

by back-propagating errors,” Nature, Vol. 323, No. 6088, Oct. 1986, pp. 533–536,

doi:10.1038/323533a0.

[229] Sekar, V., Zhang, M., Shu, C., and Khoo, B. C., “Inverse Design of Airfoil Using a

Deep Convolutional Neural Network,” AIAA Journal , Vol. 57, No. 3, March 2019,

pp. 993–1003, doi:10.2514/1.j057894.

[230] Jacobs, E. N., Ward, K. E., and Pinkerton, R. M., “The characteristics of 78 related

airfoil sections from tests in the variable-density wind tunnel,” Tech. Rep. NACA-

TR-460, PB-177874, National Advisory Committee for Aeronautics, Washington,

DC, United States, Jan. 1933, Available at https://ntrs.nasa.gov/search.j

sp?R=19930091108.

276

http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.2514/1.j057894
https://ntrs.nasa.gov/search.jsp?R=19930091108
https://ntrs.nasa.gov/search.jsp?R=19930091108

	DEDICATION
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Abstract
	Introduction
	Motivation
	Challenges in Aerodynamic Optimization
	Design Automation
	Design Assessment and Reliability
	Computational Efficiency

	Opportunities for Adaptive CFD in Aerodynamic Optimization
	High-Order CFD Methods
	Output Error Estimation
	Mesh Adaptation
	Aerodynamic Optimization With Adaptive CFD

	Thesis Overviews
	Major Contributions
	Thesis Outline

	Governing Equations and Discretization
	Equations and Notation
	Compressible Navier-Stokes Equations
	Reynolds-Averaged Navier-Stokes Equations
	Discontinuous Galerkin Discretization
	Solution Approximation
	Weak Form
	Inviscid Discretization
	Viscous Discretization
	Source Term Discretization

	Discrete Form and Solution Technique

	Adjoint-Based Sensitivity Analysis and Output Error Estimation
	Adjoint and Duality
	Discrete Adjoint
	Adjoint-Based Sensitivity Analysis
	Adjoint-Based Output Error Estimation
	Error Localization

	Adjoint Consistency

	Aerodynamic Optimization Problem Formulation, Error Estimation and Mesh Adaptation
	Continuous and Discrete Optimization
	Optimization Formulation via the Adjoint
	Optimizer-Based Trimming
	Solver-Based Trimming

	Output Error Estimation for Optimization
	Output Error Estimation for Standalone Simulations
	Output Error Estimation for Optimization Problems
	Implementation

	Mesh Adaptation Incorporating Anisotropy
	Error Localization
	Continuous Mesh Framework
	Hessian-Based Anisotropy Detection
	Element Sizing Using A Priori Rate Estimates

	Sampling-Based Anisotropy Detection
	Error Convergence Model
	Local Error Sampling
	Cost Model
	Mesh Optimization Algorithm

	Aerodynamic Optimization Framework with Adaptive CFD
	Two-Dimensional Airfoil Optimization
	Problem Statement
	Geometry Parametrization
	Angle of Attack Handling

	Mesh Deformation
	Inverse Distance Weighting Interpolation
	Radial Basis Function Interpolation

	Optimization Algorithm
	Gradient-Based Optimizer
	Incorporation with Output Error Estimation and Mesh Adaptation
	Consistent Objective-Sensitivity Analysis
	Multifidelity Optimization Algorithm Overviews
	Hessian Reuse/Restart

	Application to Aerodynamic Optimization
	Solution Accuracy and Optimization Tolerance
	On the Effects of Discretization Errors in Optimization
	One-Dimensional Scalar Advection-Diffusion
	Inviscid Transonic RAE 2822 Airfoil Optimization

	Optimizations with Adaptive CFD
	Revisit of the One-Dimensional Advection-Diffusion Problem
	Revisit of the Inviscid Transonic Optimization on the RAE 2822 Airfoil
	Tandem RAE 2822 Airfoils
	ADODG Case 2: Turbulent Transonic Optimization on RAE 2822

	Summary

	Extension to Multipoint Aerodynamic Optimization
	Multipoint Optimization Problem
	Weighted-Sum Approach
	Adjoint and Design Equations
	Output Error Estimation

	Mesh Adaptation
	Error/Cost Allocation for Multipoint Mesh Adaptation
	Mesh Adaptation at Individual Design Points

	Optimization Algorithms
	Results
	Two-Point Inviscid Transonic Airfoil Optimization
	Three-Point Turbulent Transonic Airfoil Optimization

	Summary

	Mesh Adaptation Acceleration Techniques Based on Machine Leaning
	Machine-Learning Anisotropy Detection
	Primal and Adjoint Features
	Error Indicator Features
	Surrogate Model Using Neural Networks
	Artificial Neural Networks
	Proposed Network Architectures

	Neural Network Training
	Adaptive Simulation Results
	NACA 0012 Airfoil
	Diamond Airfoil
	MDA 30P/30N Airfoil
	Extrapolation: Tandem NACA 5410 Airfoils
	Adaptive Iteration Comparison
	p = 3 Results
	Network Training
	Tandem NACA 5410 airfoil test

	Summary

	Adjoint-Free Error Estimation and Mesh Adaptation Using Convolutional Neural Networks
	CNN-Based Model for Output Error Estimation
	Parameterized PDEs and Output Error Estimation
	Hanging-Node Mesh Adaptation
	Surrogate Model as a Regression Problem
	Convolutional Neural Networks
	Proposed Architecture and Network Training
	Fixed Network for Adaptive Simulation on General Domains

	Two-Dimensional Advection-Diffusion Problem
	Data Generation and Preprocessing
	Network Implementation and Training
	Network Testing and Model Deployment
	Interpolation on Unseen Data
	Extrapolation on Unseen Data

	Application in Aerodynamic Simulations Over Airfoils
	Data Generation and Preprocessing
	Network Implementation and Training
	Network Testing and Model Deployment
	Interpolation on Unseen Data
	Extrapolation on Unseen Data

	Summary

	Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Bibliography

