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Mesh adaptation⇔ Feature/object detection
Turbulent transonic airfoil: NACA 0012, M = 0.8, α = 1.25◦, Re = 105

Strong shock

Weak shock

WakeThin bounday layer Bounday layer growth

Computer vision object detection tasks [Redmon et al. 2015]
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Output error estimation
Suppose the governing PDE is parameterized by Nµ parameters, for a given
discretization H, i.e., mesh and approximation order, we can calculate the
scalar output of interest, J.

current space H :→ µ︸︷︷︸
parameters ∈ RNµ

→ RH(UH;µ) = 0︸ ︷︷ ︸
NH equations

→ UH︸︷︷︸
state ∈RNH

→ JH(UH)︸ ︷︷ ︸
output (scalar)

Output error: δJ = JH(UH)− J(U)

This is the difference between J computed with the discrete system solution,
UH, and J computed with the exact solution, U.

Error estimate: δJ = JH(UH)− Jh(Uh)

This is the difference in J relative to a finer discretization h.

finer space h :→ µ︸︷︷︸
parameters ∈ RNµ

→ Rh(Uh;µ) = 0︸ ︷︷ ︸
Nh equations

→ Uh︸︷︷︸
state ∈RNh

→ Jh(Uh)︸ ︷︷ ︸
output (scalar)
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Fine-space state injection

The fine space can arise from spatial or order refinement
We do not solve the fine space discretized equations Rh(Uh;µ) = 0
We use fine space adjoint Ψh and the fine space residual Rh(UH

h )

Define an injection of the coarse space state into the fine space

injection: IHh

Coarse space Fine space

UH
UH

h

The injected states UH
h will generally not satisfy the fine space discretized

equations,
Rh(UH

h ;µ) 6= 0.
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The adjoint-weighted residual

The fine space adjoint Ψh is defined as the sensitivity of the output to the
residual perturbation,

[
∂Rh

∂Uh

]T

Ψh +

[
∂Jh

∂Uh

]T

= 0

The injected states produce a residual perturbation, Rh(UH
h ;µ) 6= 0

The adjoints then transfer the residual perturbation to an output
perturbation

δJ ≈ Jh(UH
h )− Jh(Uh) ≈ ∂Jh

∂Uh
δU =

residual linearization︷ ︸︸ ︷
−ΨT

h
∂Rh

∂Uh
δU

︸ ︷︷ ︸
adjoint definition

≈ −ΨT
h δRh

= −ΨT
h Rh(UH

h ;µ)︸ ︷︷ ︸
adjoint-weighted residual
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Mesh adaptation

The adjoint-weighted residual involves a sum of the local errors over
elements

δJ = −ΨT
h Rh(UH

h ;µ) =
∑

e

−ΨT
h,eRh,e(UH

h ;µ)

The absolute value of each element’s contribution can serve as the
adaptive error indicator on that element

εe = |ΨT
h,eRh,e(UH

h ;µ)|
Elements with large adaptive indicators are targeted for adaptation
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Can we directly build a map from the states to the adaptive indicators?
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Corresponding computer vision tasks
Output error prediction⇐⇒ Image classification

Image 
Classification

Error 
Prediction

Person in the image?

Yes, label 1

How much error in the drag?
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Corresponding computer vision tasks
Adaptive indicator prediction⇐⇒ Image segmentation [Jordan, 2018]

Image 
Segmentation

Indicator 
Prediction

Difference: integer-valued vs. real-valued
State of the art technique is the convolutional neural network (CNN)
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Encoder-decoder CNN
Adaptive error indicator prediction⇐⇒ Image segmentation
Challenge: high-dimensional inputs and outputs
Go through low-dimensional representations
Paradigm: encoder-decoder type CNN
Encoding: High-dimensional input Convolution

======⇒ Low-dimensional codes

Decoding: Low-dimensional codes Deconvolution
=======⇒ High-dimensional output
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Encoder-decoder CNN
Adaptive error indicator prediction⇐⇒ Image segmentation
Challenge: high-dimensional inputs and outputs
Go through low-dimensional representations
Paradigm: encoder-decoder type CNN
Encoding: High-dimensional input Convolution

======⇒ Low-dimensional codes

Decoding: Low-dimensional codes Deconvolution
=======⇒ High-dimensional output

Fully connected layers 

Input Convolution Convolution

Reshape Reshape

Deconvolution Deconvolution

DecoderEncoder

Codes
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Encoder-decoder CNN
Adaptive error indicator prediction⇐⇒ Image segmentation
Challenge: high-dimensional inputs and outputs
Go through low-dimensional representations
Paradigm: encoder-decoder type CNN
Encoding: High-dimensional input Convolution

======⇒ Low-dimensional codes

Decoding: Low-dimensional codes Deconvolution
=======⇒ High-dimensional output

Incorporate within error estimation task

Fully connected layers 

Input Convolution Convolution

Reshape

Reshape
Deconvolution Deconvolution

Decoder

Encoder

Codes

+
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Fixed network for adaptive simulations

In adaptive simulations, state and indicator dimensions are changing
For a fixed network, both input and output dimensions are fixed
Train the network on a fixed reference mesh
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2D scalar advection-diffusion problem

2D advection-diffusion system in a square domain Ω = [0, 1]2

~V · ∇u− ν∇2u = 0, (x, y) ∈ Ω;

u = exp(0.5 sin(−4x + 6y)− 0.8 cos(3x− 8y)), (x, y) ∈ ∂Ω.

~V = [cosα, sinα] : unit advection velocity, ν : viscosity
u : scalar state, Pe ≡ |~V|L/ν : Péclet number
Parametrized discretized form

R(U;µ) = 0, µ = {Pe, α}.

Output of interest J: integral of flux, −ν∇u, on the right boundary
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Data samples

Three samples from the dataset:
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Adaptive indicator predictions on the testing set
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Output error predictions on the testing set
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Model deployment on the testing set
Model deployment in real-time simulations:

CNN meshes Adjoint meshes Output error
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Irregular computational domain/geometry

Current mesh ⇒ Fixed reference mesh ⇒ Cartesian mesh (reference space)
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Inviscid transonic flow over NACA 4-digit airfoils

Euler equations (inviscid fluid flow) in a C-shaped computational domain

∇ · #»F(u) = 0,
#»F is the convective fluxes and u is the state vector, u = [ρ, ρu, ρv, ρE]

Parametrized discretized form

R(U,µ) = 0, µ = {M, α, S},

M: free-stream Mach number, α: angle of attack, S: airfoil shape
Output of interest: drag over the airfoil
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Training data samples
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Training data samples
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Adaptive indicator predictions on the testing set
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Output error predictions on the testing set
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Model deployment (unsampled M)
NACA 2412, M = 0.70, α = 1.0◦

initial mesh drag error convergence

CNN mesh adjoint mesh
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Model deployment (unsampled α)
NACA 4412, M = 0.62, α = 4.0◦

initial mesh drag error convergence

CNN mesh adjoint mesh
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Model deployment (unsampled shape)
NACA 3709, M = 0.66, α = 0◦

initial mesh drag error convergence

CNN mesh adjoint mesh
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Conclusions and future work

Conclusions:
Adjoint-based method: analytical, requires additional adjoint solutions
Proposed CNN-based method: non-intrusive, generalizes adaptation
knowledge from data
Encoder-decoder type CNN is capable of predicting both the adaptive
error indicator and the output error
Physical-reference mapping provides a way to generalize CNN model to
irregular computational domains
For more detailed analysis/implementation, checkout my thesis at
www.gdchen.me

Future work:
Advanced training techniques and fine tuning
Improve the efficiency: share encoder-decoder parameters (symmetric)
Sparsity constraints in the latent layer: enforce independent codes
Including physical-reference mapping (Jacobian) into the model to
resolve multi-scale physics
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